Module Code	MA4053	Module Title	Numerical Analysis for Scientific Computing			
Credits	3	Hours/Week	Lectures 3 Pre		Pre –	MA1032
			Lab/Assignments	0	requisites	WIA1032
 Learning Outcomes After completing this module, the students should be able to understand a spectrum of advanced concepts in numerical analysis apply them to solve engineering and scientific problems 						
Outline SyllabusModeling, Computers, and Error Analysis• Mathematical Modeling and Engineering Problem Solving• Programming and Software• Approximations and Round-Off Errors• Truncation Errors and the Taylor Series						
 Solution of Linear Algebraic Equations Gauss- Jordan Elimination and Backsubstitution LU- Decomposition and its Applications Tri- Diagonal and Band-Diagonal Systems of Equations Singular Value Decomposition, Cholesky Decomposition & QR-Decomposition Spare Liner Systems 						
 Eigensystems Jacobi Transformations Real Symmetric Matrices Reductions to Tri- Diagonal From (Givens & Householder methods) Eigenvalues & Eigenvectors of Tri-Diagonal Matrices Hermitian Matrices 						
 Modelling of data Least Squares as a Maximum Likelihood Estimator Non- linear Models Robust Estimation Markov Chain Monte Carlo Gaussian Process Regression 						
 Integration of Ordinary Differential Equations Runge – Kutta Method Stiffness and Multistep Method Richardson Extrapolation Second Order Conservative Equations Multi – step, Multivalue and Predictor-Corrector Methods 						
 Two- Point Boundary Value Problems Shooting Method Relaxation Methods Automated Allocation of Mesh Points Handling Internal Boundary Conditions or Singular Points 						
DiffuInitiaFour	- Conservat asive Initial al Value Pro ier & Cyclio	ive Initial value Value Problems blems in multi-I		hods and	d Multi-grid I	Methods