Consider the ODE $y'' = y' + y^2$, y(0) = 4, y(1) = 1.

- 1) Use $y_k''=\frac{y_{k+1}-2y_k+y_{k-1}}{h^2}$ and $y_k'=\frac{y_{k+1}-y_k}{h}$ with $h=\frac{1}{3}$ to derive a system of non-linear equations .
- 2) Use a suitable numerical method to solve the above system of non-linear equations to find y_1, y_2 .
- 3) Write the Cubic spline C = C(x) for the function y = y(x) using $y_0 = 4$, $y_3 = 1$ and keeping y_1, y_2 as constants. Use the ODE to determine $M_k = y''(x_k)$; k = 0,1,2,3.
- 4) Now use the properties of $\mathcal{C}(x)$ to obtain a systems of non-linear equations and solve it to find y_1,y_2 .
- 5) Write the ODE as a system of first order ODEs and solve it by RK4 to find y_1, y_2 .

Note:

- 1. Two of exact same questions with a different ODE will be given for the Midmakeup1-part A.
- 2. The other two questions will be given as Midmakeup2 take home.
- 3. Midmakeup1-part B will be on PDEs, possibly containing material from the lecture on the same day, it will be MCQ.