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EE 423 – Power System Analysis  
[Section 2 – Power System Faults] 
 

Learning Objectives 
To be able to perform analysis on power systems with regard to load flow, faults and system 
stability 

Outline Syllabus  

1. Power Flow Analysis: (8 hrs) 

Analogue methods of power flow analysis: dc and ac network analysers 

Digital methods of analysis: Power Flow algorithms and flow charts, analysis using iterative techniques. 

2. Power system faults (8 hrs) 

Causes and effects of faults. Review of per unit system and symmetrical components. 

Symmetrical three-phase faults.  

Asymmetrical faults, short circuit and open circuit conditions. Introduction to simultaneous 
faults. 

3. Power System Stability: (8 hrs) 

Steady state stability: Power angle diagram, effect of voltage regulator, swing equation 

Transient stability: Equal area criterion, stability under fault conditions, step by step solution of swing 
equation 

 

 

2 Power System Fault Analysis – Prof J Rohan Lucas 
2.0 Introduction 
The fault analysis of a power system is required in order to provide information for the 
selection of switchgear, setting of relays and stability of system operation.  A power 
system is not static but changes during operation (switching on or off of generators and 
transmission lines) and during planning (addition of generators and transmission lines).  
Thus fault studies need to be routinely performed by utility engineers (such as in the CEB). 

Faults usually occur in a power system due to either insulation failure, flashover, physical 
damage or human error.  These faults, may either be three phase in nature involving all 
three phases in a symmetrical manner, or may be asymmetrical where usually only one or 
two phases may be involved.  Faults may also be caused by either short-circuits to earth or 
between live conductors, or may be caused by broken conductors in one or more phases.  
Sometimes simultaneous faults may occur involving both short-circuit and broken-
conductor faults (also known as open-circuit faults). 

Balanced three phase faults may be analysed using an equivalent single phase circuit.  
With asymmetrical three phase faults, the use of symmetrical components help to reduce 
the complexity of the calculations as transmission lines and components are by and large 
symmetrical, although the fault may be asymmetrical.   

Fault analysis is usually carried out in per-unit quantities (similar to percentage quantities) 
as they give solutions which are somewhat consistent over different voltage and power 
ratings, and operate on values of the order of unity. 

In the ensuing sections, we will derive expressions that may be used in computer 
simulations by the utility engineers. 
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2.1 Equivalent Circuits - Single phase and Equivalent Single Phase Circuits 

In a balanced three phase circuit, since the information relating to one single phase gives 
the information relating to the other two phases as well, it is sufficient to do calculations in 
a single phase circuit.  There are two common forms used.  These are (i) to take any one 
single phase of the three phase circuit and (ii) to take an equivalent single phase circuit to 
represent the full three phase circuit. 

2.1.1 Single Phase Circuit 

 

 

 

 
Figure 2.1  -  Single Phase Circuit 

Figure 2.1 shows one single phase “AN” of the three phase circuit “ABC N”.  Since the 
system is balanced, there is no current in the neutral, and there is no potential drop across 
the neutral wire.  Thus the star point “S” of the system would be at the same potential as 
the neutral point “N”.  Also, the line current is the same as the phase current, the line 
voltage is √3 times the phase voltage, and the total power is 3 times the power in a single 
phase.  

    I = IP = IL,  V = VP = VL/√3  and  S = SP = ST/3 

Working with the single phase circuit would yield single phase quantities, which can then 
be converted to three phase quantities using the above conversions.  

2.1.2 Equivalent Single Phase Circuit 
Of the parameters in the single phase circuit shown in figure 2.1, the Line Voltage and the 
Total Power (rather than the Phase Voltage and one-third the Power) are the most 
important quantities.  It would be useful to have these quantities obtained directly from the 
circuit rather than having conversion factors of √3  and  3 respectively.  This is achieved in 
the Equivalent Single Phase circuit, shown in figure 2.2, by multiplying the voltage by a 
factor of  √3 to give Line Voltage directly.   

 
Figure 2.2  - Equivalent Single Phase Circuit 

The Impedance remains as the per-phase impedance. However, the Line Current gets 
artificially amplified by a factor of √3.  This also increases the power by a factor of (√3)2, 
which is the required correction to get the total power. 

Thus, working with the Equivalent single phase circuit would yield the required three 
phase quantities directly, other than the current which would be √3 IL. 

 

 

 

A 

EL = √3EA 

Zs 
 I = √3 IL  = √3 IAS 

 

Z 

N S 

VL  =√3VAS PT 

A 

EA 

Zs 
 IP  = IAS 

 

Z 

N S 

VP  =VAS 
  PT/3 



EE 423 - Power System Analysis: Faults  –  J R Lucas – October 2005 3 

2.2 Revision of Per Unit Quantities 
Per unit quantities, like percentage quantities, are actually fractional quantities of a 
reference quantity.  These have a lot of importance as per unit quantities of parameters tend 
to have similar values even when the system voltage and rating change drastically.  The per 
unit system permits multiplication and division in addition to addition and subtraction 
without the requirement of a correction factor (when percentage quantities are multiplied 
or divided additional factors of 0.01 or100 must be brought in, which are not in the original 
equations, to restore the percentage values).  Per-unit values are written with “pu” after the 
value. 

For power, voltage, current and impedance, the per unit quantity may be obtained by 
dividing by the respective base of that quantity. 

  

 

Expressions such as Ohm’s Law can be applied for per unit quantities as well.  Since 
Voltage, Current, Impedance and Power are related, only two Base or reference quantities 
can be independently defined.  The Base quantities for the other two can be derived there 
from.  Since Power and Voltage are the most often specified, they are usually chosen to 
define the independent base quantities.  

2.2.1 Calculation for Single Phase Systems 
If  VAbase  and  Vbase  are the selected base quantities of power (complex, active or reactive) 
and voltage respectively, then 
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In a power system, voltages and power are usually expressed in kV and MVA, thus it is 
usual to select an MVAbase  and a  kVbase and to express them as 

Base current  
base

base
base kV

MVA
     I =  in  kA,  [Q106/103 = 103] 

 Base Impedance 
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2
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In these expressions, all the quantities are single phase quantities. 

2.2.2 Calculations for Three Phase Systems 
In three phase systems the line voltage and the total power are usually used rather than the 
single phase quantities.  It is thus usual to express base quantities in terms of these. 

If  VA3φbase and  VLLbase are the base three-phase power and line-to-line voltage respectively, 
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and in terms of  MVA3φbase  and  kVLLbase 

Base current  
LLbase

base
base kV

MVA
     I

3
3φ=   in  kA 

 Base Impedance 
base

LLbase
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   Z
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It is to be noted that while the base impedance for the three phase can be obtained directly 
from the VA3φbase and VLLbase (or MVA3φbase and  kVLLbase) without the need of any additional 
factors, the calculation of base current needs an additional factor of √3.  However this is 
not usually a problem as the value of current is rarely required as a final answer in power 
systems calculations, and intermediate calculations can be done with a variable √3Ibase.   

Thus in three phase, the calculations of per unit quantities becomes 
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Similarly, R and X have the same base as Z, so that  
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The power factor remains unchanged in per unit. 

2.2.3 Conversions from one Base to another 
It is usual to give data in per unit to its own rating [ex: The manufacturer of a certain piece 
of equipment, such as a transformer, would not know the exact rating of the power system 
in which the equipment is to be used.  However, he would know the rating of his 
equipment].  As different components can have different ratings, and different from the 
system rating, it is necessary to convert all quantities to a common base to do arithmetic or 
algebraic operations. Additions, subtractions, multiplications and divisions will give 
meaningful results only if they are to the same base.  This can be done for three phase 
systems as follows. 
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Example: 

A 200 MVA, 13.8 kV generator has a reactance of 0.85 p.u. and is generating 1.15 pu 
voltage.  Determine (a) the actual values of the line voltage, phase voltage and reactance, 
and (b) the corresponding quantities to a new base of 500 MVA, 13.5 kV. 

(a) Line voltage  =  1.15 * 13.8 =  15.87 kV 

 Phase voltage =  1.15 * 13.8/√3  = 9.16 kV 

 Reactance =  0.85 * 13.82/200  =  0.809 Ω 

(b)  Line voltage  =  1.15 * 13.8/13.5 =  1.176 pu 

 Phase voltage =  1.15 * (13.8/√3)/(13.5/√3)      =  1.176 pu 

 Reactance =  0.85 * (13.8/13.5)2/(500/200) =  0.355 pu 

2.2.4 Per Unit Quantities across Transformers 
When a transformer is present in a power system, although the power rating on either side 
of a transformer remains the same, the voltage rating changes, and so does the base voltage 
across a transformer.  [This is like saying that full or 100% (or 1 pu) voltage on the 
primary of a 220kV/33 kV transformer corresponds to 220 kV while on the secondary it 
corresponds to 33 kV.]  Since the power rating remains unchanged, the impedance and 
current ratings also change accordingly. 

While a common MVA3φbase can and must be selected for a power system to do analysis, a 
common VLLbase must be chosen corresponding to a particular location (or side of 
transformer) and changes in proportion to the nominal voltage ratio whenever a 
transformer is encountered.  Thus the current base changes inversely as the ratio.  Hence 
the impedance base changes as the square of the ratio. 

For a transformer with turns ratio NP:NS, base quantities change as follows. 

Quantity Primary Base Secondary Base 

Power (S, P and Q) Sbase Sbase 

Voltage (V) V1base V1base . NS/NP                 =  V2base 

Current (I) Sbase/√3V1base Sbase/√3V1base . NP/NS    =  Sbase/√3V2base 

Impedance (Z, R and X) V1base
2/Sbase V1base

2/Sbase . (NS/NP)2   = V2base
2/Sbase 

 

Example  : 

  

 

In the single line diagram shown in figure 2.3, each three phase generator G is rated at 200 
MVA, 13.8 kV and has reactances of 0.85 pu and are generating 1.15 pu.  Transformer T1 
is rated at 500 MVA, 13.5 kV/220 kV and has a reactance of 8%.  The transmission line 
has a reactance of  7.8 Ω.  Transformer T2 has a rating of 400 MVA, 220 kV/33 kV and a 
reactance of 11%.  The load is 250 MVA at a power factor of 0.85 lag.  Convert all 
quantities to a common base of 500 MVA, and 220 kV on the line and draw the circuit 
diagram with values expressed in pu. 

 

 

Load 

T1 T2 

G Transmission Line 

Figure 2.3 - Circuit for Example 
G 
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Solution: 

The base voltage at the generator is (220*13.5/220) 13.5 kV, and on the load side is 
(220*33/220) 33 kV. [Since we have selected the voltage base as that corresponding to the 
voltage on that side of the transformer, we automatically get the voltage on the other side 
of the transformer as the base on that side of the transformer and the above calculation is in 
fact unnecessary. 

Generators G 

Reactance of 0.85 pu corresponds 0.355 pu on 500 MVA, 13.5 kV base (see earlier 
example) 

Generator voltage of 1.15 corresponds to 1.176 on 500 MVA, 13.5 kV base 

Transformer T1 

Reactance of 8% (or 0.08 pu) remains unchanged as the given base is the same as the new 
chosen base. 

Transmission Line 

Reactance of 7.8 Ω corresponds to  7.8 * 500/2202 =  0.081 pu 

Transformer T2 

Reactance of 11% (0.11 pu) corresponds to  0.11 * 500/400 = 0.1375 pu 

(voltage base is unchanged and does not come into the calculations) 

Load 

Load of 250 MVA at a power factor of 0.85 corresponds to 250/500 = 0.5 pu at a power 
factor of 0.85 lag (power factor angle = 31.79°) 

∴    resistance of load = 0.5 * 0.85  =  0.425 pu 

and  reactance of load = 0.5 * sin 31.79° = 0.263 pu 

The circuit may be expressed in per unit as shown in figure 2.4. 

 

 

 

 

2.3 Symmetrical Three Phase Fault Analysis 
A three phase fault is a condition where either (a) all three phases of the system are short-
circuited to each other, or (b) all three phase of the system are earthed. 

 

This is in general a balanced condition, and we need to only know the positive-sequence 
network to analyse faults.  Further, the single line diagram can be used, as all three phases 
carry equal currents displaced by 120o. 

a 

b 

c 

Supply 
side 

3 φ fault 

Figure 2.5a – Balanced three phase fault 

a 

b 

c 

Supply 
side 

3 φ to earth fault 

Figure 2.5b – Balanced three phase fault to 

Figure 2.4 - Circuit with per unit values 

  j0.08                                j0.081                           j0.138        0.425 + j0.263 

1.176 pu 

1.176 pu 

j0.355 

j0.355 
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Typically, only 5% of the initial faults in a power system, are three phase faults with or 
without earth.  Of the unbalanced faults, 80 % are line-earth and 15% are double line faults 
with or without earth and which can often deteriorate to 3 phase fault.  Broken conductor 
faults account for the rest. 

2.3.1 Fault Level Calculations 
In a power system, the maximum the fault current (or fault MVA) that can flow into a zero 
impedance fault is necessary to be known for switch gear solution.  This can either be the 
balanced three phase value or the value at an asymmetrical condition.  The Fault Level 
defines the value for the symmetrical condition.  The fault level is usually expressed in 
MVA (or corresponding per-unit value), with the maximum fault current value being 
converted  using the nominal voltage rating. 

MVAbase  =√ 3 . Nominal Voltage(kV) . Ibase (kA)  

MVAFault =√ 3 . Nominal Voltage(kV) . Isc (kA) 

where 

MVAFault  – Fault Level at a given point in MVA 

Ibase – Rated or base line current 

Isc    – Short circuit line current flowing in to a fault  

The per unit value of the Fault Level may thus be written as 

 
pu

pualNo
pusc

base

sc

base

sc

Z
V

I
I
I

 . I . 
 . I . 

 Level Fault ,min
,3

3
Voltage Nominal3
Voltage Nominal3

====  

The per unit voltage for nominal value is unity, so that 

 
puZ

 puLevel Fault 1)( = ,  

  
pu

base
base Z

MVA
 MVApuLevel FaultMVAFault =×= )(  

The Short circuit capacity (SCC) of a busbar is the fault level of the busbar.  The strength 
of a busbar (or the ability to maintain its voltage) is directly proportional to its SCC.  An 
infinitely strong bus (or Infinite bus bar) has an infinite SCC, with a zero equivalent 
impedance and will maintain its voltage under all conditions. 

Magnitude of short circuit current is time dependant due to synchronous generators.  It is 
initially at its largest value and decreasing to steady value.  These higher fault levels tax 
Circuit Breakers adversely so that current limiting reactors are sometimes used. 

The Short circuit MVA is a better indicator of the stress on CBs than the short circuit 
current as CB has to withstand recovery voltage across breaker following arc interruption. 

The currents flowing during a fault is determined by the internal emfs of machines in the 
network, by the impedances of the machines,  and by the impedances between the 
machines and the fault. 

Figure 2.6 shows a part of a power system, where the rest of the system at two points of 
coupling have been represented by their Thevenin’s equivalent circuit (or by a voltage 
source of 1 pu together its fault level which corresponds to the per unit value of the 
effective Thevenin’s impedance). 
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With CB1 and CB2 open, short circuit capacities are 

 SCC at bus 1  =   8 p.u.   gives   Zg1 = 1/8 = 0.125 pu 

 SCC at bus 2  =   5 p.u.   gives   Zg2 = 1/5 = 0.20   pu 

Each of the lines are given to have a per unit impedance of 0.3 pu. 

 Z1 = Z2 = 0.3 p.u. 

With CB1 and CB2 closed, what would be the SCCs (or Fault Levels) of the busbars in the 
system ? 

 
 

 

 

 

 
 

 

This circuit can be reduced and analysed as in figure 2.7b. 

 
Thus, the equivalent input impedance is given by to give Zin as 0.23 pu at bus 3, 
so that the short circuit capacity at busbar 3 is given as 
   | SCC3 |=  1/0.23  =  4.35 p.u 
The network may also be reduced keeping the identity of Bus 1 as in figure 2.7c. 

 

 Z2= 0.3 pu Z1 = 0.3 pu 

1 2 

3 

Fault Level = 8 pu  

CB2 CB1 

IF 
     Fault 

Fault Level = 5 pu 

Figure 2.6 – Circuit for Fault Level Calculation 
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Figure 2.7b Determination of Short circuit capacity at Bus 3 
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Figure 2.7c Determination of Short circuit capacity at Bus 1
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Figure 2.7a Determination of Short circuit capacities 
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0.3 pu 0.3 pu 
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Thus, the equivalent input impedance is given by to give Zin as 0.108 pu at bus 1, so that 
the short circuit capacity at busbar 1 is given as 
   | SCC1 |=  1/0.108  =  9.25 p.u 

This is a 16% increase on the short circuit capacity of bus 1 with the circuit breakers open. 

The network may also be reduced keeping the identity of Bus 2.  This would yield a value 
of  Zin as 0.157 pu, giving the short circuit capacity at busbar 2 as 

   | SCC2 |=  1/0.157  =  6.37 p.u 

This is a 28% increase on the short circuit capacity of bus 2 with the circuit breakers open.  

Typical maximum values of short circuit capacities at substations in Sri Lanka in 2000 are 
shown in table 2.1.  Actual fault currents are lower than these values due to the presence of 
fault impedance in the circuit. 

Ampara 206  
Anuradhapura 223  
Anuradhapura 183  
Badulla 434  
Balangoda 177  
Biyagama 503  
Bolawatte 543  
Deniyaya 194  
Embilipitiya 160  
Galle 189  
Habarana 314  
Inginiyagala 160  
Kelanitissa 549  
Kelanitissa 646  

Kelanitissa 434 
Kiribathkumbura 440 
Kolonnawa 623 
Kolonnawa 543 
Kosgama 457 
Kotugoda 474 
Kurunegala 234 
Madampe 354 
Matara 286 
Matugama 286 
Nuwara Eliya 417 
Oruwela   63 
Panadura 389 
Pannipitiya 697 

Puttalam GS 366  
Rantembe 257  
Ratmalana 680  
Sapugaskanda 572  
Sapugaskanda 274  
Seetawaka 463  
Thulhiriya 429  
Trincomalee 183  
Ukuwela 423  
Wimalasurendra 509  
 
Average SCC 377 MVA 
Std deviation 166 MVA 
Average Isc  6.6 kA 

Table 2.1 – Maximum 3φ Fault Levels at 33kV Substations in Sri Lanka in 2000 

2.4 Fault Currents in synchronous machines 

 - - sub transient - - transient - - - - - - - - - - - - - - - - - - - steady state - - 
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Figure 2.8 – Transient decay of current in synchronous generator 
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As mentioned earlier, the currents flowing in the power system network during a fault is 
dependant on the machines connected to the system. Due to the effect of armature current 
on the flux that generates the voltage, the currents flowing in a synchronous machine 
differs immediately after the occurrence of the fault, a few cycles later, and under sustained 
or steady-state conditions.  

Further there is an exponentially decaying d.c. component caused by the instantaneous 
value at the instant of fault occurring.  These are shown in figure 2.8. 
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Figure 2.9a & b – Steady state and Transient current  
Figure 2.9a and 2.9b show the steady state current waveform, and the transient waveform 
of a simple R-L circuit, to show the decay in the d.c. component.  In addition to this, in the 
synchronous machine, the magnitude of the a.c. current peak also changes with time as 
shown in figure 2.9c, with the unidirection component of the transient waveform removed. 

Due to the initial low back 
emf at the instant of fault 
resulting in high current, the 
effective impedance is very 
low.  Even when the d.c. 
transient component is not 
present, the initial current 
can be several times the 
steady state value.  Thus 
three regions are identified 
for determining the 
reactance.  These are the sub-
transient reactance xd

” for the 
first 10 to 20 ms of fault, the 
transient reactance xd' for up 
to about 500 ms, and the 
steady state reactance xd 
(synchronous reactance). 
.  The sub-transient must 
usually be used in fault 
analysis.  

 
oa  -  peak value of steady state short-circuit current 

ob  -  peak value of transient short-circuit current 

oc  -  peak value of sub-transient short-circuit current 
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Figure 2.9c–Synchronous machine transient  
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The r.m.s. values of current are given by 
 
 
 
 
 
 
 

The typical generator reactance values are given above for reference. 

2.5 Revision of Symmetrical Component Analysis 
Unbalanced three phase systems can be split into three balanced components, namely 
Positive Sequence (balanced and having the same phase sequence as the unbalanced 
supply), Negative Sequence (balanced and having the opposite phase sequence to the 
unbalanced supply) and Zero Sequence (balanced but having the same phase and hence no 
phase sequence).  These are known as the Symmetrical Components or the Sequence 
Components and are shown in figure 2.10. 

 
The phase components are the addition of the symmetrical components and can be written 
as follows. 

 a  =  a1  +  a2  +  a0 
 b  =  b1  +  b2  +  b0 
 c  =   c1  +  c2  +  c0 
The unknown unbalanced system has three unknown magnitudes and three unknown 
angles with respect to the reference direction.  Similarly, the combination of the 3 sequence 
components will also have three unknown magnitudes and three unknown angles with 
respect to the reference direction.   

Thus the original unbalanced system effectively has 3 complex unknown quantities a, b 
and c (magnitude and phase angle of each is independent), and that each of the balanced 
components have only one independent complex unknown each, as the others can be 
written by symmetry.  Thus the three sets of symmetrical components also have effectively 
3 complex unknown quantities.  These are usually selected as the components of the first 
phase a (i.e. a0, a1 and a2) . One of the other phases could have been selected as well, but 
all 3 components should be selected  for the same phase.  

Thus it should be possible to convert from either sequence components to phase 
components or vice versa. 

 

≡ +                          +   
a 

b 

c 

a 1 
b 1   

c 1 

a 2 

b 2 

c 2 a 0 
c 0 b 0 

    Unbalanced system                         Positive Sequence        Negative Sequence     Zero Sequence    
    3 unknown magnitudes                         1 unknown magnitude        1 unknown magnitude    1  unknown magnitude  
    3 unknown angles                                 1 unknown angle                1 unknown angle            1 unknown angle 

Figure 2.10 – Symmetrical Components of unbalanced 3 phase 
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subtransient 
reactance   

transient 
reactance   

steady-state 
reactance   

turbo - 
generator   10 - 20 %   15 - 25 %   150 - 230 % 

salient - pole 
generator 15 - 25 %   25 - 35 %   70 - 120 % 
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2.5.1 Definition of the operator α 
When the balanced components  are considered, we see that the most frequently occurring 
angle is 1200. 

In complex number theory, we defined  j  as the complex operator which is equal to √-1 
and a magnitude of unity, and more importantly, when operated on any complex number 
rotates  it anti-clockwise by an angle of 900.   

i.e.  j  = √-1  = 1 ∠900 

In like manner, we define a new complex operator α  which has a magnitude of unity and 
when operated on any complex number rotates it anti-clockwise by an angle of 1200.   

i.e. α  =  1 ∠1200  =  - 0.500 + j 0.866 

Some Properties of α  

 α  =  1∠2π/3  or  1∠1200 

 α2  =  1∠4π/3  or  1∠2400  or  1∠-1200 

  α3  =  1∠2π     or  1∠3600   or  1 

i.e. α3 - 1 = ( α - 1)( α2 + α + 1)  =  0 

Since α is complex, it cannot be equal to 1, so that α - 1 cannot be zero. 

∴  α2 + α + 1  = 0 
This also has the physical meaning that the three sides of an 
equilateral triangles must close as in figure 2.11. 

Also  α−1  =  α2  and    α− 2  =  α 

2.5.2 Analysis of decomposition of phasors 
Let us again examine the sequence components of the unbalanced quantity, with each of 
the components written in terms of phase a components, and the operator α, as in figure 
2.12. 

 

We can express all the sequence components in terms of the quantities for A phase using 
the properties of rotation of 00, 1200 or 2400.   

Thus 

 a = a0  +    a1     +     a2 

 b = a0  + α2 a1   +  α a2 

 c = a0  +  α a1   +  α2 a2 

This can be written in matrix form. 

≡ +                          +   
a 

b 

c 

a 1 
b1=α2a1 

  

c1=αa1 

a 2 

b2=αa2 

c2=α2a2 b0=c0=a0 

    Unbalanced system                         Positive Sequence        Negative Sequence     Zero Sequence  
Figure 2.12 – Expressing components in terms of phase a 

1 

α 

α2 

Figure 2.11 Phasor Addition 
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This gives the basic symmetrical component matrix equation, which shows the relationship 
between the phase component vector Ph  and the symmetrical component vector  Sy  using 
the symmetrical component matrix [Λ]. Both the phase component vector Ph and the 
symmetrical component vector  Sy  can be either  voltages or currents, but in a particular 
equation, they must of course all be of the same type.  Since the matrix is a [3×3] matrix, it 
is possible to invert it and express  Sy  in terms of   Ph. 

2.5.3 Decomposition of phasors into symmetrical components 

Now  let us invert the symmetrical component matrix [Λ]. 
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and the discriminent ∆ = 3(α - α2) = 3α (1-α) 

Substituting, the matrix equation simplifies to give 

[Λ]-1  =  

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
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Since α−1  =  α2,   α− 2  =  α  and  1 + α + α2  =  0,  the matrix equation further simplifies to 

[Λ]-1  =  









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



αα
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2
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It is seen  that α  is the complex conjugate of α2,  and  α2  is the complex conjugate of α. 

Thus the above matrix [∆]-1  is one-third of the complex conjugate of [∆]. 

i.e. [Λ]-1  = 3
1 [Λ]* 

This can now be written in the expanded form as 
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2.5.4 Sequence Impedances 
Consider how the impedance appears in sequence components.   

To do this we must first look at the impedance matrix in phase components. 

 Vp  =   [Zp].Ip 
Substituting for Vp and Ip in terms of the  symmetrical components we have 

 [Λ] Vs = [Zp]. [Λ] Is 

pre-multiplying equation by [Λ]-1 we have 

 Vs = [Λ]-1.[Zp]. [Λ] Is 

This gives the relationship between the symmetrical component voltage Vs and the 
symmetrical component current Is, and hence defines the symmetrical component 
impedance matrix or Sequence Impedance matrix. 

Thus [Zs] = [Λ]-1.[Zp]. [Λ] = 3
1  [Λ]*.[Zp]. [Λ] 

In a similar manner, we could express the phase component impedance matrix in terms of 
the symmetrical  component impedance matrix as follows. 

 [Zp] = [Λ].[Zs]. [Λ]-1 = 3
1  [Λ].[Zs]. [Λ]* 

The form of the sequence impedance matrix  for practical problems gives one of the main 
reasons for use of  symmetrical components in practical power system analysis. 

If we consider the simple arrangement of a 3 phase transmission line (figure 2.13), we 
would have the equivalent circuit as 

 

 

 

 

 

 

 

If we think of an actual line such as  from Victoria to Kotmale, we would realise that all 3 
phase wires would have approximately the same length (other than due to differences in 
sagging) and hence we can assume the self impedance components to be equal for each 
phase.  

i.e.  Ra = Rb = Rc  and   La = Lb = Lc 

When a current passes in one phase conductor, there would be induced voltages in the 
other two phase  conductors.  In practice all three phase conductors behave similarly, so 
that we could consider the mutual coupling between phases also to be equal. 

i.e. Mab = Mbc = Mca 

In such a practical situation as above, the phase component impedance matrix would be 
fully  symmetrical, and we could express them using a self impedance term zs and a 
mutual impedance term zm. 

 

Ra La 

Rb Lb 

Rc Lc 

Mab 

Mbc 

Mca 

Figure 2.13 – 3 phase transmission line 
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Thus we may write the phase component impedance matrix as 
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We may now write the symmetrical component impedance matrix as 
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This can be simplified using the property 1+α+α2 =  0 as follows 
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We see an important result here.  While the phase component impedance matrix was a full 
matrix, although it had completely symmetry, the sequence component impedance matrix 
is diagonal.  The advantage of a diagonal matrix is that it allows decoupling for ease of 
analysis. 

2.6 Power associated with Sequence Components 
With phase components, power in a single phase is expressed as 

 Pphase = V I cos φ 

Thus in three phase, we may either write P = √3 VL IL cos φ  = 3 Vp Ip cos φ for a balanced 
three phase system.  However, with an unbalanced system this is not possible and we 
would have to write the power as the addition of the powers in the three phases. 

Thus  Apparent Complex Power   S  = Va Ia
*  +  Vb Ib

*  +  Vc Ic
*  

The active power P is obtained as the Real part of the complex variable S. 
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This equation may be re-written in matrix form as follows. 

 S = [ ] *
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*
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. p
T
p

c

b

a

cba IV
I
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VVV =
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Let us now convert it to symmetrical components, as follows. 

 S = Vp
T. Ip

*  =  [ ][ ] [ ][ ]*... s
T

s IV ΛΛ  

which may be expanded as follows. 

 S  = [ ] [ ] **.. s
TT

s IV ΛΛ  = [ ] [ ] *1.3. s
T
s IV −ΛΛ  =  3 Vs

T. Is
* 

i.e. S  = 3 (Va0 Ia0
*  +  Va1 Ia1

*  +  Va2 Ia2
*) 

This result can also be expected, as there are 3 phases in  each of the sequence components 
taking the  same power. 

Thus  P  = 3 (Va0 Ia0 cos φ0  +  Va1 Ia1 cos φ1  +  Va2 cos φ2) 

2.7 Asymmetrical Three Phase Fault Analysis 

2.7.1 Assumptions Commonly Made in Three Phase Fault Studies 
The following assumptions are usually made in fault analysis in three phase transmission 
lines. 

• All sources are balanced and equal in magnitude & phase  
• Sources represented by the Thevenin’s voltage prior to  fault at the fault point  
• Large systems may be represented by an infinite bus-bars 
• Transformers are on nominal tap position 
• Resistances are negligible compared to reactances  
• Transmission lines are assumed fully transposed and all 3 phases have same Z  
• Loads currents are negligible compared to fault currents  
• Line charging currents can be completely neglected 

2.7.2 Basic Voltage – Current Network equations in Sequence Components 
The generated voltages in the transmission system are assumed balanced prior to the fault, 
so that they consist only of the positive sequence component Vf (pre-fault voltage).  This is 
in fact the Thevenin’s equivalent at the point of the fault prior to the occurrence of the 
fault.  

 Va0  = 0 –  Z0 Ia0  

 Va1  = Ef –  Z1 Ia1 

 Va2  = 0 –  Z2 Ia2 

This may be written in matrix form as 
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These may be expressed in Network form as shown in figure 2.14. 
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2.8 Analysis of Asymmetrical Faults 
The common types of asymmetrical faults occurring in a Power System are single line to  
ground faults and line to line faults, with and without fault impedance.  These will be 
analysed in the following sections. 

2.8.1 Single Line to Ground faults (L – G faults) 
The single line to ground fault can occur in any of the three phases.  However, it is 
sufficient to analyse only one of the cases.  Looking at the symmetry of the symmetrical 
component matrix, it is seen that the simplest to analyse would be the phase a. 

Consider an L-G fault with zero fault impedance as shown in figure 2.15. 

Since the fault impedance is 0, at the fault 

 Va = 0, Ib = 0, Ic = 0 

since load currents are neglected. 

These can be converted to equivalent 
conditions in symmetrical components as 
follows. 

 Va = Va0 + Va1 + Va2 = 0 

and  
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αα , giving Ia0 = Ia1 = Ia2 = Ia/3 

Mathematical analysis using the network equation in symmetrical components would yield 
the desired result for the fault current If = Ia. 
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Thus Va0 + Va1 + Va2 = 0 = – Z0.Ia/3 + Ef – Z1.Ia/3 – Z2.Ia/3 

Simplification, with If = Ia, gives 

 

 

Also, considering the 
equations 

Va0 + Va1 + Va2 = 0, and  

Ia0 = Ia1 = Ia2 indicates 
that the three networks 
(zero, positive and negative) must be connected in series (same current, voltages add up) 
and short-circuited, giving the circuit shown in figure 2.16. 

Ef Z1 I1 

V1 

Z2 I2 

V2 

Z0 I0 

V0 
Positive Sequence Network           Negative Sequence Network   Zero Sequence Network 

Figure 2.14 – Elementary Sequence Networks 

a 

b 

c 

Supply 
side 

  Fault 

Figure 2.15 – L-G fault on phase a 

f 
f Z Z Z 

E 
I 

3 

0 2 1 + + 
= Ef Z1 Ia1 

Va1 

Z2 Ia2 

Va2 

Z0 Ia0 

Va0 

Figure 2.16 – Connection of Sequence Networks for L-G fault with Zf = 0 
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In this case, Ia corresponds to the fault current If, which in turn corresponds to 3 times any 
one of the components (Ia0 = Ia1 = Ia2 = Ia/3).  Thus the network would also yield the same 
fault current as in the mathematical analysis.  In this example, the connection of sequence 
components is more convenient to apply than the mathematical analysis. 

Thus for a single line to ground fault (L-G fault) with no fault impedance, the sequence 
networks must be connected in series and short circuited.  

Consider now an L-G fault with fault impedance Zf as shown in figure 2.17. 

at the fault 

 Va = IaZf,  Ib = 0,  Ic = 0 

These can be converted to equivalent 
conditions in symmetrical components as 
follows. 

 Va0 + Va1 + Va2 = (Ia0 + Ia1 + Ia2).Zf 

and  
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giving Ia0 = Ia1 = Ia2 = Ia/3 

Mathematical analysis using the network equation in symmetrical components would yield 
the desired result for the fault current If as 

 

 

Similarly, considering the 
basic equations, 

 Ia0 = Ia1 = Ia2 = Ia/3, 
and 

Va0 + Va1 + Va2 = 3Ia0.Zf 

or Va0 + Va1 + Va2 = Ia0.3Zf , would yield a circuit connection of the 3 sequence networks 
in series an in series with an effective impedance of 3 Zf. 

2.8.2 Alternate Methods of Solution 
The addition of the fault impedance can be treated in two alternate methods as follows.  
These methods are also applicable for other types of asymmetrical three phase faults. 

(a) Zf  considered as part of earth path impedance 
The fault impedance Zf in the L-G fault, is effectively in the earth path.  Both the positive 
sequence and the negative sequence being balanced and being 1200 apart will always add 
up to zero and would never yield a current in the earth path.  On the other hand, the zero 
sequence currents in the three phase are balanced but in phase giving an addition of 3 times 
the zero sequence current (3 Ia0) in the earth path.  This would give a voltage drop in the 
earth path (or zero sequence circuit) of  3Ia0.Zf or mathematically equal to Ia0.3Zf, giving an 
increase of the zero sequence impedance of 3Zf, giving the circuit shown in figure 2.17 
which is identical to that of figure 2.16, except that V0 now incorporates the effects of 3Zf 
as well. 
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side 

  
Fault 

Figure 2.17 – L-G fault on phase a with Zf 
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f Z Z Z 
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0 2 1 + + 
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+ 3Zf 

Ef Z1 Ia1 

V1 

Z2 Ia2 

V2 

Z0 Ia0 
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Figure 2.16 – Connection of Sequence Networks for L-G fault with Zf 

3Zf 
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(b) Zf  considered as part of each line impedance 

The fault impedance Zf in the L-G fault, is 
effectively in the path of phase a.  Since the 
other two phases are having zero currents 
(load currents neglected), addition of an 
impedance in series to either of these lines 
would not cause any voltage drop or other 
change in circuit conditions.  Thus the 
problem can also be considered as each line 
having an additional line impedance of Zf, 
and a zero impedance L-G fault at its end. 

This would yield a sequence connection of networks, with each of the sequence 
impedances increased by an amount of Zf, as shown in figure 2.19.  This result too is  
identical to that of figure 2.16, except that Va0, Va1, Va2 all now incorporates the effect of 
Zf as well. 

 
The two alternate methods described are useful when analysing faults which are somewhat 
complication in connection. 

It is also to be noted, that while the mathematical solution method will always work for 
any type of fault, a connection of networks need not always be available. 

2.8.3 Line to Line faults (L – L faults) 
Line-to-Line faults may occur in a power system, with or without the earth, and with or 
without fault impedance. 

(a) L-L fault with no earth and no Zf 
Solution of the L-L fault gives a simpler 
solution when phases b and c are considered 
as the symmetrical component matrix is 
similar for phases b and c.  The complexity 
of the calculations reduce on account of this 
selection.  At the fault, 

Ia = 0, Vb = Vc and  Ib = – Ic 

 

Ef Z1+Zf Ia1 

Va1 

Z2+Zf Ia2 

Va2 

Z0+Zf Ia0 

Va0 

Figure 2.19 – Alternate method for L-G fault with Zf in line path 

Ef Z1 Ia1 

Va1 

Z2 Ia2 

Va2 

Z0 Ia0 

Va0 

Figure 2.17 – Alternate method for L-G fault with Zf in ground path 
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  Fault 
Zf 
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Figure 2.18 – L-G fault with Zf 

a 

b 

c 

Supply 
side Fault 

Figure 2.20 – L-L fault on phases b-c 
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Mathematical analysis may be done by substituting these conditions to the relevant 
symmetrical component matrix equation.  However, the network solution after converting 
the boundary conditions is more convenient and will be considered here. 

 Ia = 0 and  Ib = – Ic when substituted into the matrix equation gives 
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which on simplification gives Ia0 = 0, and Ia1 = – Ia2  or Ia1 + Ia2 = 0 

and Vb = Vc on substitution gives 
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which on simplification gives  

Va1 =  Va2 

The boundary conditions  

Ia0 = 0,  Ia1 + Ia2 = 0,  and  Va1 =  Va2 
indicate a solution where the two 
networks positive and negative are 
in parallel and the zero sequence on 
open circuit, as given in figure 2.21. 

(b) L-L-G fault with earth and no Zf 
At the fault, 

Ia = 0, Vb = Vc = 0 

gives 

Ia0 + Ia1 + Ia2 = Ia = 0 

and the condition 

Va0 = Va1 = Va2 (can be shown) 

These conditions taken together, can be seen to 
correspond to all three sequence networks 
connected in parallel. 

(c) L-L-G fault with earth and Zf 
If Zf appears in the earth path, it could be 
included as 3Zf, giving (Z0 + 3Zf) in the zero 
sequence path. 

(d) L-L fault with Zf  and no earth 
If Zf appears in the fault path, between phases b 
and c, it could be included as ½ Zf in each of b 
and c.  Inclusion of ½ Zf  in a havin zero current would not affect it, so that in effect, ½ Zf 
can be added to each of the three phases and hence to each of the 3 sequence networks as 
(Z1+½ Zf), (Z2+½ Zf) and (Z0+½ Zf).  The normal circuit analysis would have yielded the 
positive and negative sequence networks in parallel with a connecting impedance of Zf, 
which is effectively the same. 
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side Fault 

Figure 2.22 – L-L fault on phases b-c 
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Figure 2.21 – Connection of Sequence Networks for L-L fault 
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Figure 2.23 – Connection for L-L-G fault 
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2.9 Derivation of Sequence Networks 

2.9.1 Sequence impedances of network components 
The main network components of interest are the transmission lines, transformers, and 
synchronous machines.   

(a) The conductors of a transmission line, being passive and stationary, do not have an 
inherent direction.  Thus they always have the same positive sequence impedance and 
negative sequence impedance.  However, as the zero sequence path also involves the 
earth wire and or the earth return path, the zero sequence impedance is higher in value. 

(b) The transformer too, being passive and stationary, do not have an inherent direction.  
Thus it always has the same positive sequence impedance, negative sequence 
impedance and even the zero sequence impedance.  However, the zero sequence path 
across the windings of a transformer depends on the winding connections and even 
grounding impedance. 

(c) The generator (or a synchronous machine), on the other hand, has a inherent direction 
of rotation, and the sequence considered may either have the same direction (no 
relative motion) or the opposite direction (relative motion at twice the speed).  Thus 
the rotational emf developed for the positive sequence and the negative sequence 
would also be different.  Thus the generator has different values of positive sequence, 
negative sequence and zero sequence impedance.   

2.9.2  Single-line diagrams for network components 

(a) Generator 
The generator may, in general, be represented by the star-connected equivalent with 
possibly a neutral to earth reactance as shown in figure 2.24, together with the three phase 
diagrams for the positive sequence, negative sequence and zero sequence equivalent 
circuits.  The neutral path is not shown in the positive and negative sequence circuits as the 
neutral current is always zero for these balanced sequences.  Also, by design, the generator 
generates a balanced voltage supply and hence only the positive sequence will be present 
in the supply. 

 
Since the 3 component networks are balanced networks, they may be represented by 
single-line diagrams in fault calculations. 
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Figure 2.24 – Sequence component networks of generator 
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Figure 2.25 –single-line networks for sequences of generator 
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(b) Transmission lines and cables 
The transmission line (or cable) may be represented by a single reactance in the single-line 
diagram.   

Typically, the ratio of the zero sequence impedance to the positive sequence impedance 
would be of the order of 2 for a single circuit transmission line with earth wire, about 3.5 
for a single circuit with no earth wire or for a double circuit line. 

For a single core cable, the ratio of the zero sequence impedance to the positive sequence 
impedance would be around 1 to 1.25. 

Transmission lines are assumed to be symmetrical in all three phases.  However, this 
assumption would not be valid for long un-transposed lines (say beyond 500 km) as the 
mutual coupling between the phases would be unequal, and symmetrical components then 
cannot be used. 

(c) Single windings 
Consider each of the simple types of windings for the zero sequence path.  These diagrams 
are shown, along with the zero sequence single line diagram in figure 2.25. 

The unearthed star connection does not provide a path for the zero sequence current to pass 
across, and hence in the single line diagram, there is no connection to the reference.  With 
an earthed star connection, the winding permits a zero sequence current to flow, and hence 
is shown with a direct connection to the reference.  The earthed star with impedance, is 
similar except that 3 times the neutral impedance appears in the zero sequence path.  The 
delta connection on the other hand does not permit any zero sequence current in the line 
conductors but permits a circulating current.  This effect is shown by a closed path to the 
reference. 

(d) Transformers 
The equivalent circuit of the transformer would be a single reactance in the case of positive 
sequence and negative sequence for a two-winding transformer, but highly dependant on 
the winding connection for the zero sequence.  The transformer would be a combination of 
single windings.  The magnetising impedance is taken as open circuit for fault  studies. 

Two-winding transformers 

Two winding (primary and secondary), three phase transformers 
may be categorised into (i) star-star, (ii) earthed star – star, (iii) 
earthed star – earthed star, (iv) delta – star, (v) delta – earthed 
star, (vi) delta – delta.  There are also zig-zag windings in 
transformers which has not been dealt with in the following sections. 
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Figure 2.25 –single-line networks for sequences of generator 
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The figure 2.26 shows the zero-sequence diagrams of the transformers are drawn. 

 
Considering the transformer as a whole, it can be seen that the single-line diagrams 
indicate the correct flow of the zero-sequence current from primary to secondary. 

Three-winding transformers 
Three phase, three winding have an additional tertiary winding, and 
may be represented by a single line diagram corresponding to the 
ampere-turn balance, or power balance. 

 NP IP + NS IS + NT IT = 0 or VP IP + VS IS + VT IT = 0 

which in per unit quantities would yield the common equation 

 IP,pu + IS,pu + IT,pu = 0 

This may be represented by three reactances 
connected in T, giving the general single line diagram 
for fault studies for the 3 winding transformer, as 
shown in  figure 2.27. 

The positive sequence and negative sequence 
diagrams would have a direct connection to the T 
connection of reactances from P, S and T. 

The zero sequence network would again be built up from the single winding arrangements 
described and would yield the single line diagrams given in the following section, and 
other combinations. 
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Figure 2.28a – single-line networks for sequences of three-winding transformers  
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Figure 2.26 – single-line networks for sequences of two-winding transformers  
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A particular point to keep in mind is that what is generally available from measurements 
for a 3 winding transformer would be the impedances across a pairs of windings. (ie. ZPS,  
ZPT, and ZST ), with the third winding on open circuit.  Thus we could relate the values to 
the effective primary, secondary and tertiary impedances (ZP, ZS and ZT ) as follows, with 
reference to figure 2.27. 

 ZPS  =  ZP  +  ZS,  ZPT  =  ZP  +  ZT,  ZST  =  ZS  +  ZT,   

The values of  ZP, ZS and ZT can then be determined as 

 ( ),2
1

STPTPSP ZZZZ −+=  ( ),2
1

PTSTPSS ZZZZ −+=  ( )PSSTPTT ZZZZ −+= 2
1  

As in the case of the 2 winding transformer, 3Zn is included wherever earthing of a neutral 
point is done through an impedance Zn. 

In Summary 
An unearthed star winding does not permit any zero sequence current to flow so that it 
could be represented in the single line diagram by a 'break' between the line terminal and 
the winding.  
 
If the star point is solidly earthed, it could be represented by a solid connection across the 
break and for an earth connection through an impedance,  by 3 times the earthing 
impedance across the break. 
 
In the case of a delta winding, no current would flow from the line, but a current is possible 
in the winding depending on the secondary winding connections. This could be represented 
by a break in connection with the line but with the winding impedance being connected to 
the reference. 
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Figure 2.28b – single-line networks for sequences of three-winding transformers  
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These diagrams are used as building blocks for obtaining the zero sequence networks for 
the two winding and 3 winding transformers. 

Example: 

Draw the three sequence networks for the transmission network shown in figure 2.30. 
 

 
The Positive sequence network is drawn similar to the single line diagram with the 
generator and the synchronous motor being replaced by their internal emf and impedance. 
This is shown in figure 2.31a. 

 
The negative sequence network is drawn as in figure 2.31b. 

 
and the zero sequence network is drawn as in figure 2.31.c. 
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Figure 2.31c –Zero sequence diagram for Example 
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Figure 2.31b –Negative sequence diagram for Example 
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Figure 2.31a –Positive sequence diagram for Example 
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2.10 Broken conductor faults 
In broken conductor (or open conductor) faults, the load currents cannot be neglected, as 
these are the only currents that are flowing in the network.  The load currents prior to the 
fault are assumed to be balanced.   

2.10.1 Single conductor open on phase “a” 
In the case of open conductor faults, the 
voltages are measured across the break, 
such as a-a′. 

For the single conductor broken on 
phase “a” condition, shown in figure 2. 
, the  boundary conditions are 

 Ia = 0, Vb = Vc = 0 

This condition is mathematically identical to the condition in the L-L-G fault in the earlier 
section, except that the voltages are measured in a different manner.  The connection of 
sequence networks will also be the same except that the points considered for connection 
are different. 

2.10.2 Two conductors open on phases “b” and “c” 
For the two conductors broken on phases 
“b” and “c” condition, the boundary 
conditions are 

 Va = 0, Ib = Ic = 0 

This condition is mathematically 
identical to the condition in the L-G fault 
in the earlier section.  The connection of 
sequence networks will also be the same except that the points considered for connection 
are different. 

2.11 Simultaneous faults 

Sometimes, more than one type of fault may occur simultaneously.  These may all be short 
circuit faults, such as a single-line-to-ground fault on one phase, and a line-to-line fault 
between the other two phases.  They may also be short-circuit faults coupled with open 
conductor faults. 

Solution methods are similar, if the equations are considered, however they may not have 
an equivalent circuit to ease analysis.  Sometimes, the constraints required cannot be 
directly translated to connections, but may also need ideal transformers to account for the 
different conditions. 
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Figure 2.   – Open conductor fault on phase a 
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