
Resonance & Mutual Inductance – Professor J R Lucas 1  November 2001 

Resonance & Mutual Inductance 
 
Resonance 
You are probably familiar with Resonance in sound. In this we know that at resonance we 
here the greatest sound (water column) and have the maximum vibration (string).  The same 
idea is present in electrical engineering. Resonance basically occurs when a quantity, such as 
voltage or current, becomes a maximum.  However, a maximum with one quantity generally 
corresponds to a minimum with some other quantity,  so that it could also correspond to the 
condition when minimum value of a quantity occurs. 

For example,  if we consider a series circuit, maximum current for a given source voltage 
would occur when the impedance of the circuit  is a minimum.  Also, if it is an a.c. circuit, the 

impedance  R+jX  has a magnitude 22 XR + which would have a minimum value when X is 
zero (this is possible in a practical circuit because inductive reactances and capacitive 
reactances have opposite signs).  When X is zero, the circuit is purely resistive and the power 
factor of the circuit becomes unity.  Thus resonance is also defined in terms of the power 
factor of a circuit becoming unity. 

Thus there are three main methods of defining the resonance condition in an electrical circuit. 

(a) When the current through a circuit for a given source voltage becomes a maximum: 

This condition can also be stated in the following manner: 

when the voltage across a circuit for a given source current becomes a minimum, 

when the admittance of the circuit becomes a maximum, or 

when the impedance of the circuit becomes a minimum. 

(b) When the voltage across a circuit for a given source current becomes a maximum: 

This condition can also be stated in the following manner: 

when the current through a circuit for a given source voltage becomes a minimum, 

when the impedance of the circuit becomes a maximum, or 

when the admittance of the circuit becomes a minimum. 

and 

(c) When the power factor of the circuit becomes Unity:  

This condition can also be stated in the following manner: 

when the impedance of  the circuit is purely real, 

when the admittance of  the circuit is purely real, or 

when the voltage  and the current are in phase. 

The condition (a) occurs in series circuits, and is usually referred to as Series Resonance. 

The condition (b) occurs in parallel circuits, and is usually referred to as Parallel Resonance. 

While the conditions series resonance and parallel resonance are exclusive conditions, the 
unity power factor condition could correspond to either series resonance or parallel resonance. 
In complicated circuits, the latter condition could also give displaced answers from the other 
two conditions. 
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When does oscillations occur ?  What determines the natural frequency of the oscillations ? 

To answer this question,  let us look at the simple pendulum, which you are all familiar with.  
Why does it oscillate ?  Because there is energy in the system, and because there are two 
forms of energy – namely, potential energy and kinetic energy.  During oscillations, 
neglecting energy losses, the energy gets transferred between potential energy and kinetic 
energy.  The natural frequency of oscillations, at which the pendulum would normally 
oscillate, depends on the value of gravity, length and so on.  The friction in the medium would 
reduce the energy and cause the pendulum to slow down. 

The same is true in an electric  circuit.  There is the energy stored in the electrostatic field in 
the capacitance and the energy stored in the electromagnetic field in the inductance.  
Oscillations occur when the energy gets transferred between these two forms.  Resistance 
present in the circuit would cause energy losses and the resulting oscillations would decrease. 

Series Resonance 

Series resonance occurs in a circuit where the different energy storage elements are connected 
in series. 

Consider the circuit shown in the figure. 

At an angular frequency of ω, the value of 
the impedance is given by 

 Z = R + jωL + 
Cjω

1
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(i) Consider the value of ω at which the current magnitude becomes a maximum for a given 
voltage.  This also corresponds to the impedance magnitude becoming a minimum, or the 
voltage becoming a minimum for a given  current. 
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The condition for  maximum or minimum impedance can either be obtained by differentiation 
of | Z | or even | Z |2  or by inspection from physical considerations. 

Since | Z |2 consists of the sum of two square terms, the minimum value for any of the 
components would be zero. Since only the second term is dependant on ω, the minimum 
value could occur when the second term is zero. 
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This would also correspond to the minimum value of Z. 
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 phase angle of   I = - θ 

Let us now look at the variation of current magnitude and phase angle with frequency ω. 

R jωL 
Cjω

1
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Now consider the frequency at which the power factor of the circuit becomes unity. 

This occurs when the imaginary part of the impedance, or the current becomes zero. 

i.e.  j )
1

(
C

L
ω

ω − = 0,  or   at  ω = ωo. (which is the same condition as before). 

It is seen from the plots of the magnitude of current and the phase angle that the shape 
changes dependant on the value of the series resistance of the circuit.  It is seen that when the 
series resistance tends to zero, near perfect resonance occurs, giving a current magnitude 
tending to infinity. Similarly, as the series resistance tends to zero, the angle of the current 
with respect to the voltage tends to either π/2  or −π/2, changing at ω = ωo. 

The series resistance r in a series circuit, defines the quality of the resonance.  If the resistance 
is low, the power loss is low and hence the quality is high.   Also, if we compare it with the 
value of the impedance of either the inductance or capacitance at resonance, low r means that 
r is much less than either Lωo  or 1/Cωo. 

Quality Factor 

Thus in the simplest terms, we could defined the quality of the circuit in terms of either the 
ratio of  Lωo  to r or 1/Cωo to r. 

Thus   Quality  =  
rCr

L

o

o

ω
ω 1=   at resonance,  for a series circuit 

[For a parallel circuit, the quality would actually increase when the value of resistance R tends 
to infinity rather than zero, and hence the inverse ratio would define the quality] 

Thus we have a means of defining the quality of a resonant circuit, but which would appear to 
cause confusing results if the series and parallel circuits  are considered. 

Thus we would like to have a definition for the quality factor  Q of a circuit  in terms of 
quantities which do not vary dependant on the nature of the circuit. 

The quality of the resonant circuit is in fact a relationship between the maximum energy 
stored in the energy storing elements (L or C) and the energy dissipation in the resistive 
elements (r or R) in the circuit.  

Since the quality of a circuit was originally defined in terms of the ratio of impedance earlier, 
we would like to obtain the same answers for the simple series and parallel circuits with the 
definition based on energy.  Thus the Q factor has a multiplying constant 2π  associated with 
it, in addition to the ratio of energies as follows. 

 Q = 
cycleper  n  dissipatioenergy  

energy  stored  maximum
2 ⋅π  

We will now  verify whether this gives the correct answer for the simple series circuit 
considered earlier. 

[For comparison purposes, consider the case of a simple pendulum. Note that the maximum 
kinetic energy occurs at the minimum point, and the maximum potential energy occurs at the 
highest point and that the stored energy does not change if friction were absent.  However  it 
is easier to calculate either the maximum kinetic  energy only or the maximum potential 
energy only, rather than calculate both] 

In a similar manner, the maximum energy stored in the electromagnetic field occurs in the 
inductor when the current is a maximum, and the maximum energy stored in the electrostatic 
field occurs in the capacitor when the  voltage is a maximum.   
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The total energy does not change unless dissipated by the resistive elements in the circuit.  
However for calculation purposes, it is easier to either consider the energy stored at either the 
peak of the current or the peak of the voltage. 

For a series circuit, it is easier to talk about the current through the capacitance rather than the 
voltage across the capacitor. 

Thus for a current of  i(t) = Im sin ωt 

Maximum energy stored in the inductor in a series circuit = 2
1  L Im

2 

Energy dissipated per cycle in the series resistor  =  r Irms
2 T,  where T = 2π/ω 

Therefore the Q-factor for the series circuit would be given b 
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  which is the expected result. 

Parallel Resonance 

Parallel resonance occurs in a circuit where the different 
energy storage elements are connected in parallel. 

Consider the circuit shown in the figure. 

At an angular frequency of ω, the value of the admittance is 
given by 

 Y = 
R

1
 + 
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magnitude of admittance = | Y |, | Y |2 =  2
2

)
1

(
1

L
C
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parallel resonance is seen to occur when the imaginary part is zero.  i.e. 
Lω

1
= Cω  

It is also seen that this also corresponds to unity power factor. 

In practical circuits, series resonance and parallel resonance will occur in different parts of the 
same circuit. The unity power factor resonance may correspond to one of these. 

Example 1 

Find the types of resonance and the resonance frequencies of the circuit shown in the figure. 

Solution 

 Z = R + jωL1 + 
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Consider each type of resonance condition in turn 

(a) when the power factor is unity 

 the equivalent impedance is purely real.  Therefore   ωL1 + 
CL

L

2
2
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i.e. L1 + L2 - ω2 L1L2C = 0,  or  
CLCLL

LL

eq

1

21

212 =
+

=ω ,  where  Leq = 
21

21

LL

LL

+
 

It is seen that the value of equivalent inductance obtained is the parallel equivalent of the two 
inductances of the circuit. 

Thus the unity power factor resonance frequency corresponds to ω = 
CLeq

1
 

(b) when the impedance of the circuit is a minimum 

Examination will show that this also occurs when in fact corresponds to a minimum value of 
impedance or series resonance.  But this need not be the case for all examples. 

 

(c)  when the impedance of the circuit is a maximum 

 | Z |2 = R2 + 
2

2

2
1 1 
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 This impedance will have a maximum value of infinity at (1 - ω L2 C) = 0 

 ∴ resonant frequency for parallel resonance = 
CL2

1
 

Example 2 

Find the unity power factor resonance frequency of the circuit shown in the figure. Also 
determine  the parallel resonance frequency if R = 20 Ω, L = 10 mH, and C = 4 µF. 

Solution 
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for unity power factor resonance, the impedance Z is purely real. 
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Now consider the magnitude of the impedance 

 | Z |2  =  
22222
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ωω
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for maximum value of | Z |, | Z |2  must be a maximum.  i.e.   
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i.e. [(1-ω2LC)2 + ω2C2R2].2ωL2 – (R2 + ω2L2)[2(1-ω2LC).(− 2ωLC) + 2ωC2R2] = 0 

i.e. (1-ω2LC)2L2 + ω2C2L2R2 + 2R2 LC(1-ω2LC) + 2 ω2L2 LC(1-ω2LC) – (R2 + ω2L2)C2R2 =0  

−ω4L4 C2 + ω2 [-2L3C + C2L2R2 - 2R2 L2C2 +2 L3C - L2C2R2] +L2 + 2R2 LC - C2R4 = 0 

substituting values for the components 

 -0.16×10-18 ω4 – 1.28×10-12 ω2 + 1.2944×10-4 = 0 

 ω4 + 8×106 ω2 – 0.8090×1015 = 0 

which is a quadratic equation in ω2 which can  be solved. 

 ω2  = −4×106 ± √(16×1012 + 0.8090×1015) = −4×106 ± 28.723×106 = 26.723×106 

 ω  = 4972 rad/s  = 791.4 Hz 

You will notice that the resonance frequency is close but not the same as the earlier result. 

Loci Diagrams for RL and RC circuits 

(a) Series RL circuit 

Consider the series RL circuit, with a constant voltage V at 
constant frequency ω applied  across it. 

If the resistance R of the circuit varies, the component voltages 
VR and VL would vary keeping  the complex sum a constant.  
This can be plotted in the following manner 

 V = (R + j ωL) .I       = (R + j X) .I  = VR + VL 

If the applied voltage V is taken as reference, the current I 
would be lagging the voltage by a phase angle φ. 

The voltage VR is in phase with the current I and the voltage VL 
would be quadrature leading the current I (or current I lagging 
the voltage VL by 90o).  

Since VR and VL must be mutually perpendicular, when R varies, the point P must move 
along a semi-circle.  This semi-circle is the locus of the point P as R is varied. 

Let us now look at the variation of I as  R varies and X is kept fixed. 

This is best understood by considering the addition as  V = VL + VR. 

This has the phasor diagram as shown.  VL is first drawn 
perpendicular to I (such that the current lags the voltage by 90o).  
The locus of the point P will  again be a semi-circle. 

Since X is fixed, there will be a definite proportion between the 
length of  phasor I  and the length of phase VL.  Also, I is always 
lagging the voltage VL by 90o.  Thus the locus of I must also be a 
semi-circle lagging the semi-circle for voltage VL by 90o as shown.  

(b) Series RL circuit with the inductance having a finite resistance r 

Practical inductances would usually have a significant value 
of winding resistance r which may not be neglected.  In such a 
case, the measured voltage VX across the practical inductor 
would have two components corresponding to the inductive 
component and the resistive component  respectively. 
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Let us consider the phasor diagram for the voltages. 

The locus of the node between the resistor and the inductor is 
no longer a semi-circle.  However, when the total resistance 
of the circuit, R + r is considered, the locus of that point with 
the pure inductance part remains a semi-circle.  If X is the 
variable, then the ratio of VR to Vr remains a constant and the 
value of the internal resistance of the coil can be determined.  

(c) Series RC circuit  

The series RC circuit is analysed in a similar manner to the 
series RL circuit.  However the current would be leading in 
this case instead of lagging the  voltage. 

Unlike in the case of the practical inductor, the practical 
capacitor does not have significant amount of losses.  Thus 
the practical locus diagram can be considered  to be the same 
as the theoretical diagram. 

(d) Parallel RL and RC Circuits 

The loci diagrams of parallel RL and RC circuits may be obtained in a manner similar to 
obtaining the loci  diagrams for the series circuits. 

Mutual Inductance 
Mutual coupling between coils exist, when one coil is in the magnetic field created by another  
coil. 

Consider two magnetically coupled coils as shown in the figure. 

When a varying current ip(t) flows in the primary 
winding, then a varying flux φp is produced in the 
same coil and produces a back emf ep(t). Part of 
the flux produced φm can link with a second coil.  
Since this flux will also be varying, an induced 
emf es will be produced in the second coil. 

 ep = Np 
td

d pφ
, es = Ns 

td

d mφ
,  φm = k . φp 

The mutual flux φm will be directly proportional to the primary flux φp, with a coefficient of 
coupling k slightly less but very close to unity. 

In the linear region of the magnetisation characteristic, the flux produced φp will be 
proportional to the current ip producing the  flux.  Thus the mutual flux φm will also be 
proportional to the current ip. Thus the induced emf es in the secondary will be proportional to 
the rate of change of  current in the primary, with the constant of  proportionality being 
defined as the Mutual inductance Msp. 

i.e. es 
td

id
M
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id p
sp

p =∝ ,  where   
p
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sp i

kN

i

N
M
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==  

Thus the (coefficient of) Mutual inductance is defined as the flux linkage produced in a 
secondary winding per unit current in the primary winding. 
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The sign associated with the mutual inductance can be positive or negative dependent on the 
relative directions of the two windings.  In other words, the direction of the voltage induced in 
the second coil will depend on the relative direction of winding of the two coils. 

The flux φp in a  coil is be related to the current  ip producing the flux through the self  
inductance of the coil  Lp and may be expressed in terms of the dimensions  of the magnetic 
path (length l  and cross-section A) as follows. 

i.e. Lp = 
p

pp

p

pp

p

pp

i

AHN

i

ABN

i

N µφ
==  , but  Np ip = Hp l  

∴  Lp =
l

AN

li

AiNN p

p

ppp µµ 2

=
⋅

 

In like manner, the mutual inductance may be derived in terms of the dimensions. 

 Msp = 
p

ppsp

p

pssp

p

pssp

i

AHNk

i

ABNk

i

Nk µφ
== = 

l

ANNk

li

AiNNk spsp

p

ppssp µµ
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⋅
 

similarly,  Mps  =   
l

ANNk psps µ
 

The coupling between the primary and the secondary, for all practical purposes, will be 
identical to the coupling between the secondary and the primary, so that kps = ksp. 

Thus it can be seen that for all practical purposes, the mutual inductance between the primary 
winding and the secondary winding is identical to the mutual inductance between the 
secondary winding and the primary winding, and would usually be denoted by a single 
quantity M and a single coefficient k. 

 M = 
l

ANkN ps µ
,   Lp = 

l

AN p µ2

,   Ls = 
l

AN s µ2

 

giving M2 =  k2 Lp Ls   or    M = k sp LL  

Energy  stored in a pair of mutually coupled coils 

We know that an inductor stores energy in the electromagnetic field equal to 2
2
1 LI . 

In like manner, when there is mutual coupling present, the total energy stored by two coils is 
different from the addition of  the 2

2
1 LI  terms.  This change is the effective energy stored in 

the mutual inductance. 

Consider the pair of coils shown. 

Total energy stored  =  ∫ vp ip dt + ∫ vs is dt 

 =  ∫∫ ±+± dti
dt

id
M

dt

id
Ldti

dt

id
M

dt

id
L s

ps
sp

sp
p ).().(  

 =  ∫ Lp ip dip ± ∫ M ip dis  +  ∫ Ls is dis ± ∫ M is dip 

This may be grouped to give 

Total energy stored   =     ∫ Lp ip dip  +  ∫ Ls is dis ± ∫ M ip dis ± ∫ M is dip 

    =  spsspp iiMiLiL ±+ 2

2
12

2
1  

Therefore the effective energy stored in the mutual inductance corresponds to   ± M ip is . 

l 

A 

Np Ns 

Vp Vs Lp Ls 

is ip M 



Resonance & Mutual Inductance – Professor J R Lucas 10  November 2001 

Equivalent inductance of 2 mutually coupled coils in series 

 

 
 

It will be seen that the coils can either be connected so  that the fluxes aid each other, as in the 
first figure and the fluxes oppose each other as in the second figure. 

Since each current is  i, 

Total energy stored = iiMiLiL .2
22

12
12

1 ++    or   iiMiLiL .2
22

12
12

1 −+  

If a single equivalent inductor Leq is considered, the  total energy stored would be 2
2
1 iLeq . 

Thus equating the energies we have 
2

2
1 iLeq  =  iiMiLiL .2

22
12

12
1 ++   =  iiMiLiL .2

22
12

12
1 −+  

i.e. Leq =  L1 + L2 + 2 M      =  L1 + L2 − 2 M 
 

Thus it is seen that the effective inductance can either increase or decrease due to mutual 
coupling dependant on whether the coils are wound in the same direction or not. 
Example 3 

Consider a couple of coils connected in series as shown in the figure. 

Let each coil have N turns, so that the total series 
connected coil has 2N turns. 

If the dimensions of the common magnetic circuit 
on which these are wound have area A and length l 

 L1 = L2 = 
l

AN µ2

,  and the total coil L = 
l

AN

l

AN µµ 22 4)2( = . 

L1 + L2 is obviously not equal to this  total.  What went wrong ? 

If the two coils are wound on the same magnetic circuit, very closely, then there would be 
mutual coupling with the coefficient of  coupling almost unity. 

Then, M = k sp LL  = 1 × 
l

AN

l

AN

l

AN µµµ 222

=⋅  

Thus the total inductance would be L1 + L2 + 2 M = 
l

AN µ24
 as expected. 

Magnetic circuit Analysis 

As you are aware, when a coil is wound round a magnetic core, the core becomes magnetised 
and one side becomes a north pole and the other side becomes a south pole. There are different 
methods of remembering which side is which.  One of the simplest methods to remember is 
given below. 

 

 

In  this  method, if we look at the coil from one side, if the current direction is anti-clockwise 
the nearer side is a north pole (which is  also seen from the arrow direction of  N); and if the 
current direction is clockwise, the nearer side is a south pole (which is  also seen from the 
arrow direction of  S). 

L2 L1 

I1 I2 

L1 L2 L1 L2 
i i 
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If you look at coil A and coil B, we can easily visualise that they are both wound in the same 
direction.  That is, if we examine the coil from the left hand side when a current is entering the 
left hand side end of the coil, each coil would produce a south pole at the left hand side and a 
north pole at the right hand side.    

 

 

 

With the slightly differently drawn diagram it would be less obvious. 

Further if the magnetic circuit was not a straight line, confusion 
could tend to enter the decision. A method would be to open out the 
bent path to make it a straight line and then compare directions. 

Each time we analyse a magnetic circuit, we  would need to look at the relative directions of 
the two coils. However, once wound, the relative directions of the coils would not change, 
independent of how we  look at the coils.  Thus we can use a simpler method to know the 
relative directions of the coils.  For this purpose we use dots to denote similar ends of different 
coils. 

Dot Notation 

The relative directions of coils is important in determining the direction of induced voltage 
with mutual coupling.  Consider the following magnetic circuits, and the corresponding 
electrical circuit  with polarities defined by the dotted ends. 

 

 

 

 

Note that  there are two possible ways of drawing the dotted ends, but both give the same 
relationship to each other.  The dots do not indicate that one end is a north pole or a south 
pole, as this would depend on which direction the current passes in the coil.  The dots indicate 
similar ends in that if a changing flux passes in the magnetic core, then the induced voltages 
would either all correspond to direction of the dot or all to the opposite direction.  Thus they 
indicate similar  ends of windings only.  

Consider the same core as before, but with the coil B wound in the opposite direction. 

 

 

 

 

 

The position of the dots again indicate the different winding directions. 
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Once the  dots are drawn to indicate similar ends, unlike in the magnetic circuit, there is no 
real necessity to physically place the winding diagram in the same  physical position.  Thus 
the following diagrams would be identical.  

 

 

 

Thus it is seen that once the dots have been marked to identify similar ends, the physical 
positions have no meaning and we can draw them where it is convenient. 

Let us now see how, once the dots have been marked, in an electrical circuit the correct 
directions of the induced voltage scan be obtained. 

 

 

 
 

If a single coil is considered, the induced voltage would always be opposite to the direction of 
current flow in that  winding.  The voltages V1 and V2 have been drawn as such in the above 
diagrams. 

Let us now see what would happen due to each individual current. 

Since each winding is wound in the same direction, the current I1 would induce voltages in A 
and B in the same sense.  Also if the current I2 is marked as shown, then it too would induce 
voltages in A and B in the same sense, and also in  the same sense as due to the current I1.  
The fluxes and the corresponding induced emfs are thus additive as the coils are wound in the 
same direction.  This is also shown by the non magnetic equivalent circuit.  

In other words, the voltage drop due to the self inductance term and the voltage drop due to 
the mutual inductance term have the same sign. 

Let us now see what would happen if the direction of the current I2 is changed without 
changing any physical considerations.  

 

 

 
 

Obviously, the direction of the voltage V2 due to this current I2 on its own winding will change 
in direction.  However, the induced voltage due to the current I1 will have the same direction 
for both coils, as the physical directions of the two coils are still the same as before. 

Thus it is seen that the voltage drop due to the self inductance term and the voltage drop due to 
the mutual inductance term have opposite signs. 

Let us see what would happen if the direction of one of the coils were changed but with the 
currents entering each winding at the left hand end of the winding. 
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If the direction of one of the windings is changed, the mutual induced voltage will change in 
direction relative to the self inductance  term.  Thus again the voltage drop due to the self 
inductance term and the voltage drop due to the mutual inductance term have opposite signs. 

The final possibility is if both the direction of the winding and the current direction are 
changed. 

 

 

 

It will easily be seen that the voltage drop due to the self inductance terms and that due to the 
mutual inductance term must have the same sign. 

The above  derivations were done primarily based on the magnetic circuits appearing in the 
above 4 cases. 

Let us now see what has happened with the electrical circuits. 

The summary of the 4 cases 
are shown.  It is seen that in 
cases 1 and 4, the mutual 
inductance term has the 
same sign, while in cases 2 
and 3 the mutual inductance 
term has opposite sign to the  
self inductance term. 

Let us see what properties 
actually cause the above 
situation. 

It is seen that in both cases 1 
and 4, the currents marked 
enter the coil at the dotted 
end, while  in both cases 2 
and 3, one current enters at 
a dotted end, while the other 
current leaves at the dotted 
end. 

The above results can be stated in the following manner. 

• If both currents either enter at the dotted end, or both currents leave at the dotted 
end, the sign associated with the mutual inductance is positive, and the mutual 
inductance term in the voltage drop would have the same sign as the self inductance 
term. 

• If one current enters at a dotted end and the other current  leaves  at the  dotted end, 
the sign associated with the mutual inductance is negative, and the mutual inductance 
term in the voltage drop would have the opposite sign to the self inductance term. 
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Example 4 

For the circuit shown, write down the voltage drop across AB. 

 

 

 

  

 VAB  =  R. i1 – e(t) + (L p i1 + M p i2)   where  p = d/dt 

 VBA  =  − R. i1 + e(t) − (L p i1 + M p i2) 

It is seen that since both currents enter at the respective dotted ends, the  mutual inductance 
term and the self inductance term has the same sign.  This is true even if the voltage is 
measured in the opposite direction.  Thus it is usually advisable to treat the self inductance 
terms and the mutual inductance terms together within parenthesis to avoid wrong negation. 

In the case of steady state a.c. analysis, the input quantities of sinusoidal with frequency ω, so 
that the differential would give a multiplication of ω and a phase shift  of π/2.  Thus in this 
case, p = jω  would give the  required equations, so that the impedance due to mutual 
inductance for a.c. would in general be ± jω Μ. 

Non-coupled Equivalent circuit of simple coupled circuits 

When mutual coupling terms are present, voltage drops in a particular branch does not depend 
only on the currents in that branch.  Thus using the equations for series and parallel equivalent 
of branch circuits cannot be implemented.  This problem can be sometimes avoided by 
obtaining a non-coupled equivalent  circuit. 

(a) coupled coils being on two arms of a T-junction 

Consider the pair of mutually coupled coils shown. 
It is seen that the two coupled coils are on two arms 
of a T-junction with currents i1 and i2 flowing in 
them and a current (i1 – i2) flowing in the common 
branch.  

Kirchoff’s current law has already been applied in marking the currents. 

Applying Kirchoff’s voltage law between PR, and then  again RQ, we can write 

 VPR  =  
td

id
M

td

id
L 21

1 −   or L1 p i1 - M p i2      

or VPR  =  jωL1 i1 - jωM i2  with sinusoidal alternating current 

Note that current i1 leaves the dotted end of L1, while the current i2 enters the dotted end of L2, 
so that the sign associated with the mutual inductance is negative, or stated in other words, the 
voltage drop term due to the mutual inductance has the opposite sign to that due to the self 
inductance term across the corresponding element. 

and VRQ  =  L2 p i2 - M p i1 

If a non-coupled equivalent circuit is to be obtained, 
voltage drops in a branch  should only correspond 
to currents in it own branch.  So we will re-write the 
2 equations as follows to achieve this. 
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 VPR  =   L1 p i1 - M p i2 – M p i1 + M p i1 

i.e. VPR = (L1 – M) p i1 + M p (i1 – i2) 

similarly 

 VRQ  =  (L2 – M) p i2 + M p (i1 – i2) 

These two equations would be satisfied with LA = L1 – M, LB = L2 – M,  and  Lm =  M 

This transformation will be  valid, independent of what the directions marked for the  currents 
in the diagrams. [This is like, we have to mark current directions when proving the expression 
the parallel equivalent of two resistors, but the result derived is independent of the original 
markings].  Thus 

 

 

 

 

 

Note that  L – M appears when the two coils are opposing each other.  In this case the 
common branch has an added +M appearing on it. 

In like manner, if the two dots were at the further ends, the equations would be unchanged and 
the equivalent circuit would also be unchanged. 

 

 

   

 

 

Also, if the position of one of the dots is changed, then the two coils would be aiding each 
other, and the terms can be shown to  correspond to  L + M  with a common term of – M. 

 

 

 

 

 

Example 5 

Write down the non-coupled equivalent circuit for the coupled circuit shown. 
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Solution 

In order to get the correct sign in the non-coupled equivalent circuit, consider an imaginary 
current to be  flowing through coil 1 and coil 2, forgetting about all other elements.  This will 
tell us whether the two coils are aiding or in opposition.  In this case it is seen that  they are 
opposing. [In fact you will notice that the two coils do not exactly meet at a common node, but 
that the node P would have that  property if the positions of R2 and L2 were interchanged.  
Since they are series elements, the voltage drop equation would not change even if the order 
were changed.  [However, the  intermediate point of connection between these elements would 
have a different voltage from earlier, as the drops  are  occurring in a different order.]    

The non-coupled equivalent circuit may thus be drawn as follows. 

 

 

 

 

 

This circuit no longer has mutual coupled elements, but the elements have taken into account 
the affects of mutual inductance. 

Thus the problem may be solved as for any alternating current problems. 

Transformer as a pair of mutually coupled coils 

The transformer is in fact a pair of mutually coupled coils.  It can thus be analysed in that 
manner. 

From Kirchoff’s voltage law 

 Vp = Lp p ip – M p is 

and Vs = – (Ls p is – M p ip) 

From properties of ideal transformers we know that the ratio of 
Vp to Vs is close to a and ip to is is close to 1/a .  Thus Vp and aVs 
are comparable quantities while ip and is/a are comparable. 

Thus the equations will be re-written in terms of these comparable variables as follows. 

 Vp  =  Lp p ip – aM p is/a 

and aVs  =  – (a2Ls p is/a – aM p ip) 

If the primary current and the primary equivalent of the secondary current are considered, the 
difference must correspond to the current leakage.  Thus we may re-write in terms of this 
leakage current as 

 Vp  =  Lp p ip – aM p is/a + aM p ip – aM p ip =  (Lp – aM) p ip  + aM p .(ip – is/a) 

and aVs  = – (a2Ls p is/a – aM p ip) + aM p is/a – aM p is/a = - a2
 (Ls - 

a

M
) p is/a + aM p.(ip – is/a) 

It will be noticed that the equations have been expressed either in terms of  ip  and ip – is/a  or 
in terms of  is/a  and  ip – is/a. 

This allows a non-coupled equivalent circuit  to be  formed as follows which satisfy the 
modified equations. 
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This may also be drawn with an ideal transformer added so that the secondary quantities 
would become the unmodified voltage and current in the secondary side. 

Also, M  =  k sp LL ,   Lp/Ls = a2  so that     M  =  k
2a

L
L p

p     

giving  aM = k Lp,   Lp-aM = (1-k) Lp,     a
2(Ls – M/a) = a2(1-k) Ls 

Since k is the coefficient of coupling, (1-k) corresponds to the leakage.  Thus  (1-k)Lp  and  
(1-k)Ls  correspond to the leakage inductances lp and ls of the primary and secondary 
windings.  The shunt inductance aM  corresponds to the magnetisation inductance Lm of the 
transformer.  The transformer equivalent circuit is normally drawn with these variables rather 
than the self and mutual inductances. 

Practical Transformer 

The  practical transformer, in addition to the above has resistances rp and rs in each of the 
primary and secondary windings.  In addition, there is a loss (eddy current loss and hysteresis) 
in  the core of the transformer based on the magnetic flux in the core (or the corresponding 
voltage applied to the windings).  The winding resistances can easily be included in the 
primary and secondary sides (secondary resistance may be referred to the primary side and 
drawn as a2 rs).  The core loss is represented by a resistance Rc which appears in shunt across 
the magnetisation inductance.  Thus the complete equivalent circuit of a practical transformer 
is given as follows. 
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