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Network Theorems - J. R. Lucas 
 
The fundamental laws that govern electric circuits are the Ohm’s Law and the Kirchoff’s 
Laws. 

Ohm’s Law 

Ohm’s Law states  that the voltage v(t) across a resistor R is directly proportional to the 
current i(t) flowing through it. 

 v(t)  ∝  i(t) 
or v(t)  = R . i(t) 
This general statement of Ohm’s Law can be extended to cover inductances and capacitors as 
well under alternating current  conditions and transient  conditions.  This is then known as the 
Generalised  Ohm’s Law. This may be stated as    

v(t) = Z(p) . i(t) ,     where  p = d/dt  = differential operator 

Z(p)  is known as the impedance function of the circuit, and the above equation is the 
differential equation governing the behaviour of the circuit. 

For a resistor,   Z(p)  =  R 
For an inductor Z(p)  =  L p 

For a capacitor, Z(p)  = 
pC

1  

In the particular case of alternating current,  p = jω  so that the equation governing circuit 
behaviour may be written as 

 V  = Z(jω) . I ,  and 

For a resistor,   Z(jω)  =  R 

For an inductor Z(jω)  =  jω L 

For a capacitor, Z(jω)  = 
Cjω

1  

We cannot analyse electric circuits using Ohm’s Law only.  We also need the Kirchoff’s 
current law and the Kirchoff’s voltage law. 

Kirchoff’s Current Law 

Kirchoff’s current law is based on the principle of conservation of charge.  This  requires that 
the algebraic sum of the charges within a system cannot change.  Thus the total rate of change  
of charge must add up to zero.  Rate of change of charge is current. 

This gives us our basic Kirchoff’s current law as the algebraic sum of the currents meeting at 
a point is zero. 

i.e.  at a node, Σ Ir = 0, where  Ir  are the currents in the branches meeting at the node 

This is also sometimes stated as the sum of the currents entering a node is equal to the sum of 
the current leaving the node. 

The theorem is applicable not only to a node, but to a closed system. 
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 i1 + i2 – i3 + i4 – i5 = 0 
 i1 + i2 + i4  =  i3 + i5 
Also for the closed boundary, 

 ia − ib + ic – id – ie = 0 
 

Kirchoff’s Voltage Law 

Kirchoff’s voltage law is based on the principle of conservation of energy.  This  requires that 
the total work done in taking a unit positive charge around a closed path and ending up at the 
original point is zero.   

This gives us our basic Kirchoff’s law as the algebraic 
sum of the potential differences taken round a closed loop 
is zero. 

i.e.  around a loop, Σ Vr = 0,       

where  Vr  are the voltages across the branches in the loop. 

 va + vb + vc + vd – ve = 0 
This is also sometimes stated as the sum of the emfs taken 
around a closed loop is equal to the sum of the voltage 
drops around the loop. 

Although all circuits could besolved using only Ohm’s Law and Kirchoff’s laws, the 
calculations would be tedious.  Various network theorems have been formulated to simplify 
these calculations. 

Example 1 

For the purposes of understanding the principle of the Ohm’s Law and the Kirchoff’s Laws 
and their applicability, we will consider only a resistive circuit.  However it must be 
remembered that the laws are applicable to alternating currents as well. 

 

 

 

 

 

 

For the circuit  shown in the figure, let us use Ohm’s Law and Kirchoff’s Laws to solve for 
the current I in the 160 Ω resistor. 

Using Kirchoff’s current law 

 I  =  I1  − I2   

Using Kirchoff’s voltage law 

 100 = 20 I1  + 160 (I1 – I2) ⇒ 10 = 18 I1 – 16 I2 

 −70 = 20 I2 − 160 (I1 – I2) ⇒   7 = 16 I1 – 18 I2 

which has the solution  I1 = 1 A,  I2 = 0.5 A  and the unknown current I = 0.5A. 
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Superposition Theorem 

The superposition theorem tells us that if a network comprises of more than one source, the 
resulting currents and voltages in the network can be determined by taking each source 
independently and superposing the results. 

 

 

 

 

 

 

 

If  an excitation  e1(t)  alone gives a response r1(t),  
and an excitation  e2(t)  alone gives a response r2(t), 
then, by superposition theorem, if the excitation  e1(t) and the excitation  e2(t) together would 
give a response  r(t) = r1(t) + r2(t) 
The superposition theorem can even be stated in a more general manner, where the 
superposition occurs with scaling. 

Thus an excitation of  k1 e1(t) and an excitation of  k2 e2(t) occuring together would give a 
response of  k1 r1(t) + k2 r2(t). 
Example 2 

Let us solve the same problem as earlier, but using Superposition theorem. 

 

 

 

 

 

 
Solution 
 
 
 
 
 
 

for circuit 1, source  current = A647.2
778.37

100

180
2016020

100
20//16020

100
==

×
+

=
+

 

∴i1  = 2.647
180
20

×  = 0.294 A 
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r1(t)
Linear 
Passive 
Bilateral 
Network 

e2(t) 
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Similarly for circuit 2, source  current = A853.1
778.37

70

180
2016020

70
20//16020

70
==

×
+

=
+

 

∴i2  = 1.853
180
20

×  = 0.206 A 

∴ unknown current i = i1 + i2 = 0.294 + 0.206 = 0.500 A 

which is the same answer that we got from Kirchoff’s Laws and Ohm’s Law.  

Thevenin’s Theorem (or Helmholtz’s Theorem) 

The Thevenin’s theorem, basically gives the equivalent voltage source corresponding to an 
active network. 

If a linear, active, bilateral network is considered across one of its ports, then it can be 
replaced by an equivalent voltage source (Thevenin’s voltage source) and an equivalent series 
impedance (Thevenin’s impedance). 

 

 

 

 

Since the two sides are identical, they must be true for all conditions.  Thus if we compare the 
voltage across the port in  each case under open circuit conditions, and measure the input 
impedance of the network with the sources removed (voltage sources short-circuited and 
current sources open-circuited), then 

 Ethevenin     = Voc ,   and 

 Zthevenin     =  Zin 

Example 2 

Let us again consider the same example  to illustrate Thevenin’s Theorem. 

 

 

 

 

 

 
Solution 
Since we wish to calculate the current in 
the 160 Ω resistor, let us find the 
Thevenin’s equivalent  circuit  across  
the terminals after disconnecting (open 
circuiting) the 160 Ω resistor. 

Under open circuit conditions, current flowing is 

  = (100 – 70)/40 = 0.75 A 
∴ Voc,AB  = 100 – 0.75 ×20 = 85 V 
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∴  ETh = 85 V 

The input impedance across AB (with sources removed) = 20//20 = 10 Ω. 

 ∴  ZTh = 10 Ω. 

Therefore the Thevenin’s equivalent 
circuit may be drawn with branch AB 
reintroduced as follows. 

From the equivalent circuit, the unknown 
current i is determined as 

 i = A5.0
16010

85
=

+
 

which is  the  same result that was obtained from the earlier two methods. 

Norton’s Theorem 

Norton’s Theorem is the dual of Thevenin’s theorem, and states that any linear, active, 
bilateral network, considered across one of its ports, can be replaced by an equivalent current 
source (Norton’s current source) and an equivalent shunt admittance (Norton’s Admittance). 

 

 

 

 

Since the two sides are identical, they must be true for all conditions.  Thus if we compare the 
current through the port in each case under short circuit conditions, and measure the input 
admittance of the network with the sources removed (voltage sources short-circuited and 
current sources open-circuited), then 

 Inorton     = Isc ,   and 

 Ynorton     =  Yin 

Example 3 

Let us again consider the same example  to illustrate Norton’s Theorem. 

 

 

 

 

 

 
Solution 
Since we wish to calculate the current in 
the 160 Ω resistor, let us find the 
Norton’s equivalent  circuit  across  the 
terminals after short-circuiting the 160 Ω 
resistor. 
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ZTh=10 Ω 
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the short circuit current Isc is given by 

 Isc      =  100/20 + 70/20  =  8.5 A 

∴   Inorton = 8.5 A 

Norton’s admittance = 1/20 + 1/20 = 0.1 S 

∴ Norton’s equivalent circuit is 

and the current in the unknown resistor is A5.0
00625.01.0

00625.05.8 =
+

×  

which is the same result as before. 

Reciprocality Theorem 

The reciprocality theorem tells us that in a linear passive bilateral  network an excitation and 
the corresponding response may be interchanged. 

In a two port network, if an excitation e(t) at port (1) produces a certain response r(t) at a port 
(2), then if the same excitation e(t) is applied instead to port (2), then the same response r(t) 
would occur at the other port (1). 

 

 

 

 

Example 4 

 

 

 

 

 

Consider the earlier example, but with only one source.  Determine the current in the 160 Ω 
branch.  Now replace the 160 Ω resistor with the source in  series with it and  after short-
circuit the source at the original location, find the current flowing at the original source 
location. Show that it verifies the Reciprocality theorem. 

Solution 
 

 

 

 

 

 

For the original circuit, current I1 = A294.0
180778.37

2000
16020

20
20//16020

100
=

×
=

+
×

+
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similarly for the new circuit, current I2 = A294.0
40170

2000
2020

20
20//20160

100
=

×
=

+
×

+
 

It is seen that the identical current has appeared verifying the reciprocality theorem.  The 
advantage of the theorem is  when a circuit has already been analysed for one solution, it may 
be possible to find a corresponding solution without further work. 

Compensation Theorem 

In many circuits, after the circuit is analysed,  it is realised that only a small change need to be 
made to a component to get a desired result.  In such a case we would normally have to 
recalculate.  The compensation theorem allows us to compensate properly for such changes 
without sacrificing accuracy. 

In any linear bilateral active network, if any branch carrying a current I has its impedance Z 
changed by an amount ∆Z, the resulting changes that occur in the other branches are the same 
as those which would have been caused by the injection of a voltage source of (-) I . ∆Z in the 
modified branch.  

 

 

 

 

 

 

 

 

 

Consider the voltage drop  across the modified branch. 

 V +∆V  =  (Z +∆Z)( I +∆I)  =  Z . I  + ∆Z . I + (Z + ∆Z) . ∆I 

from the original network,  V = Z . I 

∴ ∆V  =  ∆Z . I + (Z + ∆Z) . ∆I 
Since the value I is already known from the earlier analysis, and the change required in the 
impedance, ∆Z , is also known, I .∆Z is a known fixed value of voltage and may thus be represented 
by a source of emf  I. ∆Z . 

Using superposition theorem, we can easily  see that the original sources in the active network give 
rise to the original current I, while the change corresponding to the emf  I. ∆Z must produce the 
remaining changes in the network. 

Example 5 
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From example 4, we saw that the current in the 160 Ω resistor is 0.5 A. 

Let us say that we want to change the resistor by a quantity ∆R such that the current in the 
160 Ω resistor is 0.600 A.  Then the circuit for  changes can be written  as 

∆I  = 0.6 – 0.5  =  0.1 A 

 I    =  0.5 

20//20160
5.0)(
+∆+

∆×−
=∆∴

R
RI  

i.e.  
R
R

∆+
∆×

−=
170

5.0)(1.0  

∴ 17 + 0.1 ∆R  =  (-) 0.5 ∆R 

 i.e. ∆R  =  (-)17/0.6 = (-) 28.333 Ω 

Therefore the required value of R = 160 – 28.333 = 131.67 Ω 

This could have been calculated using Kirchoff’s and Ohm’s laws but would have been more 
complicated. 

We can  also check this answer with Thevenin’s  theorem as follows. 

From Example 2, we had the  Thevenin’s circuit as 
shown, with the 160 Ω replaced by 131.67 Ω. 

The current for this value can be quickly obtained 

as Ai 6.0
667.13110

85
=

+
=  

So you can also see that by knowing Thevenin’s 
equivalent circuit for a given network, we can 
obtain solutions for many conditions with little 
additional calculations. 

The same is true with Norton’s theorem. 

Maximum Power Transfer Theorem 

As you are probably aware, a normal car battery is rated at 12 V and generally has an open 
circuit voltage  of  around 13.5 V.  Similarly, if we take 7 pen-torch batteries, they too will 
have a terminal voltage of  7×1.5 = 13.5 V.  However,  you would also be aware, that if your 
car battery is dead, you cannot go to the nearest shop, buy 7 pen-torch batteries and start your 
car.  Why is that ?  Because the pen-torch batteries, although having the same open circuit 
voltage does not have the necessary power (or current capacity) and hence the required 
current could not be given.  Or if  stated in different terms, it has too high an internal 
resistance so that the voltage would drop without giving the necessary current. 

This means that a given battery (or any  other energy supply, such as the mains) can only give 
a limited amount of power to a load.  The maximum power transfer theorem defines this 
power, and tells us the condition at which this occurs. 

For example, if we consider the above battery, maximum voltage would be given when the 
current is zero, and maximum current would be given when the load is short-circuit (load 
voltage is zero).  Under both these conditions, there  is no power delivered to the load.  Thus 
obviously in between these two extremes must be the point at which maximum power is 
delivered.   

20 Ω 20 Ω 

(160+∆R) Ω 

I.∆R 

∆I 
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ZTh=10 Ω 
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The Maximum Power Transfer theorem states that for maximum active power to be  delivered 
to the load, load impedance must correspond to the conjugate of the source impedance (or in 
the case of direct quantities,  be equal to the source impedance). 

Let us analyse this,  by first starting with the basic case of a resistive load being supplied from 
a source with only an internal resistance (this is the same as for d.c.) 

Resistive Load supplied from a source with only an internal resistance  

Consider a source with an internal emf of E and an internal 
resistance of r and  a load of resistance R. 

 current I  = 
rR

E
+

 

 Load Power P  =  I2. R  = R
rR

E
⋅








+

2

 

The source resistance is dependant purely on the source and is a constant, as is the source emf.  
Thus only the load resistance R is a variable. 

To obtain maximum power transfer to the load, let us  differentiate with respect to R. 

 [ ] 0)(21)(
)(

2
4

2

=+⋅−⋅+⋅
+

= rRRrR
rR

E
dR
dP  for maximum 

[Note: I said maximum,  rather than maximum 
or minimum, because from physical 
considerations we know that there must a 
maximum power in the range.  So we need not 
look at the second derivative to see whether it 
is maximum or minimum]. 

∴  (R+r)2 – 2R (R+r) = 0 

or  R + r – 2R = 0 

i.e.   R = r  for maximum power transfer. 

 value of maximum power = 
r

Er
rr

EP
4

22

max =⋅







+
=  

 load voltage at maximum power = 
2

.. Er
rr

ER
rR

E
=

+
=

+
 

It is to be noted that when maximum power is being transferred, only half the applied voltage 
is available to the load, and the other half drops across the source. Also, under these 
conditions, half the  power supplied is wasted as dissipation in the source. 

Thus the useful maximum power will be less than the theoretical maximum power derived 
and will depend on  the voltage required to be maintained at the load.  

Load supplied from a source with an internal impedance  

Consider a source with an internal emf of E and an internal 
impedance of    z = (r + j x)    and   a  load  of  impedance    
Z = R + jX. 

r 
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r + jx 

R +jX E 
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 current I  = 
)()( XxjRr

E
jXRjxr

E
+++

=
+++

 

 magnitude of  I =  
22 )()( XxRr

E
+++

 

Load Power P  =  I2. R  = R
XxRr

E
⋅

+++ 22

2

)()(
 

Since there are two variables R and X, for maximum power  00 =
∂
∂

=
∂
∂

X
Pand

R
P  

i.e. [ ] [ ] [ ][ ])(21)()(
)()(

22
222

2

RrRXxRr
XxRr

E
+−⋅+++⋅

+++
 = 0 

 and  [ ] [ ])(2
)()( 222

2

XxR
XxRr

E
+⋅⋅−⋅

+++
 

The second equation gives  x+ X = 0   or  X = - x 

Substituting this in the first equation gives  (r+R)2 – R . 2(r+R) = 0 

Since R cannot be negative, r + R ≠ 0.  ∴r + R – 2R = 0 

i.e.  R = r 

∴  Z = R + j X = r – j x = z* 

Therefore for maximum power transfer, the load impedance must be equal to the conjugate of 
the source impedance. 

Load of fixed power factor supplied from a source with an internal impedance  

Consider a source with an internal emf of E and an internal 
impedance of    z = (r + j x)    and   a  load  of  impedance    
Z = R + jX which has a given power factor k. [This situation 
is not uncommon, as for example if the load was an 
induction motor  load, the power  factor would have a fixed 
value such as 0.8 lag] 

 current I  = 
)()( XxjRr

E
jXRjxr

E
+++

=
+++

 

R and X are no longer independent but have the relationship  power factor f = 
22 XR

R
+

  

or   X = R
f

⋅−11
2   =  k . R 

 magnitude of  I =  
2222 ).()()()( RkxRr

E
XxRr

E
+++

=
+++

 

Load Power P  =  I2. R  = R
RkxRr

E
⋅

+++ 22

2

).()(
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R +jX E 

I 
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Since there is only one variable R, for maximum power  0=
dR
dP  

i.e. [ ] [ ] [ ][ ]kRkxRrRRkxRr
RkxRr

E )..(2)(21).()(
).()(

22
222

2

+++−⋅+++⋅
+++

 = 0 

i.e. (r+R)2 + (x+k.R)2 – 2R(r+R) – 2k.R(x+k.R) = 0 

i.e. r2 + 2 r.R + R2 + x2 + 2k.x.R + k2.R2 – 2 R.r – 2 R2 – 2k.R.x – 2 k2.R2 = 0 

i.e. r2 – R2 + x2 – k2.R2 = 0 

i.e. R2 + k2R2  =  r2 + x2 .  i.e.  R2 + X2  =  r2 + x2 

i.e. Z   =  z 

So even when the power factor of the load is different from that of the source, a condition that 
needs to be satisfied is that the magnitude of the load impedance must be equal to the 
magnitude of the source impedance.  

Note: If limits are placed on the voltage, then maximum power will not always occur under 
the above condition, but at the limit of the voltage closest to the desired solution. 

Millmann’s Theorem 
Consider a number of admittances Y1, Y2, Y3 
….Yp…. Yq, …Yn are connected together at a 
common point S. If the voltages of the free ends 
of the admittances with respect to a common 
reference N are known to be V1N, V2N, V3N 
….VpN…. VqN, …VnN, then Millmann’s theorem 
gives the voltage of the common point S with 
respect to the reference N as follows.  

Applying Kirchoff’s Current Law at node S   

∑
=
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p
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1
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i.e. ∑
=

=−
n

p
SNpNp VVY
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1 1
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An extension of the Millmann theorem is the equivalent generator theorem. 
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This theorem states that a system of voltage sources operating in parallel may be replaced by 
a single voltage source in series with an equivalent impedance given as follows (this is 
effectively the  Thevenin’s theorem applied to a number of generators in  parallel). 

 
∑

∑

=

== n

k
k

n

k
kk
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E

1
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=

n

k
kY

1
 

Example 6 

The figure shown (also used in earlier 
examples) can be considered equivalent to 
two sources of 100 V and 70 V, with 
internal resistances 20 Ω each, feeding a 
load of 160 Ω.  Using Millmann’s 
theorem (or equivalent generator theorem) 
find the current I. 

Solution 
From Equivalent generator theorem, it has been shown that the equivalent generator has 

 Eeq = 

20
1

20
1

70
20
1100

20
1

+

+
 = 85 V  (same answer was obtained with Thevenin’s Thm) 

 Zeq = Ω=
+

10

20
1

20
1

1    (again same answer was obtained with Thevenin’s Thm) 

Hence current I = 5.0
16010

85
=

+
 A 

Rosen’s Theorem (Nodal-Mesh Transformation Theorem) 

 

 

 

 

 

 

 

 

 

Rosen’s theorem tells us how we could find the mesh equivalent of a network where all the 
branches are connected  to a single node.  [In the mesh equivalent, all nodes are connected to 
each other and not to a common node as in the nodal network].  When the equivalent is 
obtained the external conditions are not affected as seen from the external currents in the 
above diagrams. 

E1 = 100 V

20 Ω 20 Ω 

160 Ω 

I E2 = 70 V 

N N 

In 

n I1 

1 

Iq 

q 

Ip 

p 

I2 

2 

≡

In 

n I1 
1 

Iq 

q 

Ip 

p 

I2 

2 

Y1 

Y2 

Yp Yq 

Yn 

Ypq 

S 



Network Theorems  – Professor J R Lucas 13  November 2007 

For the nodal network, from Millmann’s theorem 
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For a definite summation, whether the variable p is used or the variable k is used makes no 
difference.  Thus 
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For the mesh network, from Kirchoff’s current law, the current at any node is 
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Comparing equations, it follows that a solution to equation is 
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       which is the statement of Rosen’s theorem 

The converse of this theorem is in general not  possible as there are generally more branches 
in the mesh network than in the nodal network. 

However, in the case of the 3 node case, there are equal branches in both the nodal network 
(also known as star) and the mesh network (also known as delta). 
Star-Delta Transformation 

 

 

 

 

 

 

A star connected network of three admittances (or conductances)  YAS, YBS, and YCS connected 
together at a common node S can be transformed into a delta connected network of three 
admittances YAB, YBC, and YCA using the following transformations.  This has the same form as 
the general expression derived earlier. 
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Note: You can observe that in each of the above expressions if we need to find a particular 
delta admittance element value, we have to multiply the two values of admittance at the nodes 
on either side in the original star-network and divide by the sum of the three admittances.  

In the special case of three nodes, reverse transformation is also possible. 
Delta-Star Transformation 
 

 

 

 

 

 

A delta connected network of three impedances (or resistances) ZAB, ZBC, and ZCA can be 
transformed into a star connected network of three impedances ZAS, ZBS, and ZCS connected 
together at a common node S using the following transformations. [You will notice that I have 
used impedance here rather than admittance because then the form of the solution remains 
similar and easy to remember.] 
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Note: You can observe that in each of the above expressions if we need to find a particular 
delta element value, we have to multiply the two impedance values on either side of node in 
the original star-network and divide by the sum of the three impedances. 

Proof: 
Impedance between A and C with zero current  in B can be compared in the two networks as 
follows. 

 ZCA//(ZAB + ZBC)    =   ZCS + ZAS 
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similarly  BSAS
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and  CSBS
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elimination of variables from the above equations gives the desired results. 
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