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Electromagnetic Theory - J. R. Lucas 
 

One of the basic theorems in electromagnetism is the Ampere’s Law which relates, the 
magnetic field produced by an electric current, to the current passing through a conductor. 

Ampere’s Law 

Ampere’s Law states that the line integral of the 
magnetic field H taken around a closed path is equal 
to the total current enclosed by the path. 

i.e.       ∫ ∑=⋅ IdlH  

For a uniform field,  H is a constant and we have   

 H . l = Σ  I 

or if H is constant over sections, with different sections having different H,  

then  Σ H . l = Σ I 

Magnetic Field 

The magnetic field at a point is defined as being equal to the force acting on a unit magnetic 
pole placed at that point. 

[Unit of magnetic field is ampere per meter  (A/m)] 

Magnetomotive  force (mmf) 

Magnetomotive force is the flux producing ability of an electric current in a magnetic circuit.  
[It is something similar to electromotive force in an electric circuit]. 

[Unit of magnetomotive force is ampere (A)] - Note: Although some books use the term 
ampere-turns, it is strictly not correct as turns is not a dimension] 

                mmf  ℑ  = Σ I 

Consider a coil having  N turns as shown. 

It will link the flux path with each turn, so that 

total current linking with the flux would be  

 Σ I = N.I 

Thus from Ampere’s Law, the mmf produced by a coil of N turns would be N I,  

and  N I = H l. 

Field produced by a long straight conductor 

If a circular path of radius r  is considered around the conductor carrying a 
current I, then the field Hr along this path would be constant by symmetry. 

∴ by Ampere’s Law,  1.I = Hr .2π r        

or      H
I

rr =
2π

 at a radial distance  r  from the conductor. 
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Field produced inside a toroid 

Consider a toroid (similar to a ring) wound uniformly with  N  turns. 

If the mean radius of the magnetic path of the toroid is a,  then 
the magnetic path length would be 2π.a, and the total mmf 
produced would be N I. 

Thus from Ampere’s Law 

magnetic field  H
NI

a
=

2π
  inside the toroid. [variation of the magnetic field inside the cross 

section of the toroid is usually not necessary to be considered and is assumed uniform]. 

Magnetic flux density 

The magnetic field H gives rise to a magnetic flux φ, which has a magnetic flux density B for 
a given area A.  The relationship between  B  and  H  is given by the permeability of the 
medium µ.. 

     B  =  µ H,   where  µ = µo µr,    

µr  is the relative permeability and   µo  is the permeability of free space 

     µo  = 4π × 10-7 H/m     

[permeability of air is generally taken to be equal to that of free space in practice] 

[Unit of permeability is henry per meter (H/m)].  

[Unit of magnetic flux density is the tesla (T) ] 

                  φ = B.A 

[Unit of magnetic flux is the weber (Wb)] 

Reluctance of a magnetic path 

A magnetic material presents a Reluctance  S  to the flow of magnetic flux when an mmf is 
applied to the magnetic circuit.   

[This is similar to the resistance shown by an electric circuit when an emf is applied] 

Thus       mmf  =  Reluctance × flux       or         ℑ   =  S . φ 

For a uniform field,   ℑ  =  N I = H.l,    and    φ = B. A  =  µ H. A 

∴  H.l  =  S . µ H. A     

so that  the magnetic reluctance   S
l
A

=
µ

,  where  l = length  and  A = cross-section 

[Unit of magnetic reluctance is henry-1  (H-1 ) ] 

Magnetic Permeance Λ is the inverse of the magnetic reluctance.  Thus  Λ = =1
S

A
l

µ  

[Unit of magnetic permeance is henry (H)] 
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Self Inductance 

While the reluctance is a property of the magnetic circuit, the corresponding quantity in the 
electrical circuit is the inductance. 

Induced emf   e N
d
dt

L
d i
dt

= =φ ,     N φ = L i,    L
N

i
= φ

 

The self inductance L of a winding is the flux linkage produced in the same winding due to 
unit current flowing through it.  

For a coil of N  turns, if the flux in the magnetic circuit is φ, the flux linkage with the coil 
would be N.φ . 

also since  N I = S φ , L
N
S

N A
l

= =
2 2µ  

Thus the inductance of a coil of N  turns can be determined from the dimensions of the 
magnetic circuit. 

Mutual Inductance 

When two coils are present in the vicinity of each other’s magnetic circuit, mutual coupling 
can take place.  One coil produces a flux which links with the second coil, and when a current 
in the first coil varies, an induced emf occurs in the second coil. 

Induced emf in coil 2 due to current in coil 1:  

e N
d

dt
M

d i

dt2 2
12

12
1= =

φ
,  N2 φ12 = M12 i1,  M

N

i12
2 12

1

=
φ  

The Mutual inductance M12, of coil 2 due to a current in coil 1, is the flux linkage in the coil 2 
due to unit current flowing in coil 1. 

also since  N1 I1 = S φ1 , and a fraction k12 of the primary flux would link with the secondary,  
φ12 = k12 . φ1 

 ∴ M
k N N

S

k N N A

l12
12 1 2 12 1 2= = µ ,     

k12  is known as the coefficient of coupling between the coils. 

k12 = k21  so that   M12  =  M21.  For good coupling, k12  is very nearly equal to unity. 

Magnetisation Characteristic 

In the  analysis so far, the relationship  between B and H has been assumed to be linear.  That 
is the permeability has been assumed to be constant.  This is not the case with  magnetic 
materials, due especially to saturation. 

The curve drawn shows a typical shape of the 
magnetisation characteristic of a magnetic material.  
They are characterised by an ankle  point for very low 
levels of flux density, a linear region and a saturation 
region.  The knee point appears between the linear region 
and the saturated region.  In the linear region, the 
permeability is much greater than that of free space, 
whereas in the saturated region it is close to that of free 
space.  The characteristic may be drawn with either B or 
φ plotted on the y-axis and H or ℑ  on the x-axis. 
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The terms, ankle point and knee point are used to define the curve as the diagram looks quite 
a bit like a bent leg with the ankle and the knee occurring in those positions. 

Magnetic materials are usually operated in their linear region, and for best utilisation of the 
material, they are usually operated just below the knee point. [Maximum operating flux 
densities in steel are in the region of 1.6 T]. 

Since permeability is the ratio of  B to H, it is no longer constant for a non-linear 
magnetisation characteristic.  In these regions an incremental permeability is defined which 
corresponds to the rate of change of  B with H. 

 Incremental permeability   =  
dH

dB
 

 Absolute permeability    µr =  
H

B
  

For magnetic materials, the relative permeability in the linear region can vary from about 
2,000 to about 100,000 dependant on the material. 

B-H loop 

If the magnetic field is increased, at a certain 
stage the magnetic flux shows negligible 
increase.  This situation is saturation. 

If the magnetic field is applied to an initially 
demagnetised magnetic material and then 
subsequently removed, the material retains 
some of the magnetisation.  That is, the 
magnetic flux density produced by the 
magnetic field does not completely vanish. 
The amount of remaining flux density is 
known as the Remnance Bm.  This remnance 
can be removed by an application of a 
magnetic field in the opposite direction.  The 
amount of demagnetising magnetic field 
required is known as the coercivity (or 
coercive force) Hc. 

This of course must mean that the 
demagnetisation is not occurring along the 
original magnetisation curve.  An increase in 
the magnetic field in the negative direction 
would  result in saturation in the reverse 
direction.  

If the process is continued, a loop would be formed.  This loop is known  as the B-H loop or 
the hysteresis loop.  This  loop normally occurs when the magnetic field is alternating and is 
associated with a loss in energy, known as the hysteresis loss. 

This may be calculated as follows. 

 power supplied to the magnetic field   P = e.i 

but from the laws of electromagnetic induction, e =
dt

d
N

φ
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so  that P = e.i = 
dt

d
N

φ
.i  =  iNA

dt

dB
...   =  lHA

dt

dB ⋅⋅⋅  

i.e. P = ⋅⋅ H
dt

dB
volume 

∴  energy supplied per unit volume = ∫∫ ⋅=⋅⋅ dBHdt
dt

dB
H  

[Note: ∫ H.dB is also the area of the elemental area indicated on the B-H loop] 

Thus  energy supplied/unit volume/cycle = ∫ ⋅ dBH = area of B-H loop 

This energy loss is known as the hysteresis loss. 

Thus the energy supplied/unit volume/second or power would be the above multiplied by 
cycles/second or frequency. 

Thus power loss due to hysteresis  Ph = area of B-H loop × frequency 

i.e. Ph  ∝  f 

It is also seen that the area of the loop increases as the maximum flux density Bm reached 
increases.  The increase in Bm also causes a corresponding increase in Hm, but not 
proportional to the increase in Bm.   

Thus the hystesis loss would also be proportional to a power of Bm. 

Steinmetz Law 

Steinmetz Law states that the energy loss per cycle due to hysteresis is proportional to Bm
n. 

Generally,  a ≅ 1.6. 

i.e. energy loss/unit volume/cycle = area of hysteresis loop = η. Bm
a 

where the constant η is known as the Steinmetz constant and  the index  a is known as the 
Steinmetz index. 

Thus for an alternating supply with frequency f, 

 power loss/unit volume = η. Bm
1.6.f 

The Steinmetz constant for some common magnetic materials are 

Hard cast steel 7000, cast steel 750 to 3000, cast iron 2760 to 4000,very soft iron 500, 
silicon sheet steel (with 0.2% Si) 530, silicon sheet steel (with 4.8% Si) 191. 

Energy stored in a magnetic field 

Energy stored in an inductor = v i dt L
di
dt

i dt L i di Li⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ =∫∫∫ 1
2

2  

Energy stored in a unit volume in magnetic field  

  = 
N

d
dt

i dt N i d
A l

N i
l

d
A

H dB
⋅ ⋅ ⋅

= ⋅ ⋅ = ⋅ ⋅ = ⋅∫ ∫ ∫ ∫
φ

φ φ
volume .

 

                        = ⋅ = = ⋅∫
B

dB
B

B H
µ µ
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Force exerted in an magnetic field 

Consider moving the electromagnet so that the spacing changes by dx 

change in energy stored = ½ B.Η × (change in volume)  =  ½ B.Η × A. dx 

Also, change in energy stored = work done = F . dx,   

∴    F . dx = ½ B.Η . A. dx       or     F = ½ B.Η . A 

i.e.   Force exerted on unit area in an electric field  =  F/A  =  ½ B.Η         Ν/m2 

Eddy Current Loss 

The term eddy current is applied to an electric 
current which circulates within a mass of 
conductor material, when the material is 
situated in a varying magnetic field.  These 
eddy currents result in a loss of power.  Eddy 
current losses together with the hysteresis 
losses cause heating of magnetic materials.  To 
reduce these losses, not only are materials with 
low Steinmetz coefficients chosen but the 
magnetic core is made in the form of 
laminations to reduce  the eddy current loss.  

Consider the magnetic flux incident on the face 
ABCD of the cross-section of a lamination of 
thickness t. [The thickness of the lamination 
has been grossly exagerated to show details of 
eddy current paths]. 

If the flux is alternating with flux density B = 
Bm cos ωt, then eddy currents will establish 
themselves round the periphery, as shown 
shaded on the diagram. 

 The eddy currents produced will also strive to change the flux, so that the flux at the 
periphery would be comparatively more.  However, as very thin plates are considered 
(fraction of a mm), this effect can be neglected. 

Consider an eddy current path at a distance x from the centre-line of the cross-section and 
penetrating the full length l of the plates. 

If the frequency of the supply is f and a elemental path of thickness dx is considered, then the 
average rate of change of flux density over half a cycle would be given by difference in the 
positive and negative peaks divided by the time for half a cycle. 

i.e. average 
dt

dB
 over half cycle =  

T

B

T

BB mmm 4)(

2
1

=
−−

 =  4 Bm f 

∴  average rate of change of flux =   4 Bm f . area    

For a given path, at distance x,  the area would be the area enclosed by that path. 

∴  average rate of change of flux =   4 Bm f . 2x . d  =  8 Bm . f . x . d    

i.e. average induced emf in the eddy current path  =   8 Bm . f . x . d 

and, rms induced emf in the eddy current path =   8 Bm . f . x . d . k = e 

where  k  is the form factor  [for a sinusoidal waveform, k = 1.111] 

l 

d 

t 

dx 
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Since the thickness of the lamination is negligible, the length of each eddy current path can be 
considered as constant and equal to 2d, and the area through which current flows as dx.l  

∴  resistance of eddy current path = 
dxl

d

.

2.ρ
 = r, where  ρ  is the resistivity of the material 

∴  power loss in elemental strip due to eddy currents = 

dxl

d
kdxfB

r

e m

.

2.
)8( 22

ρ=   

  = 
ρ

dxlkdxfBm .32 2222

 

∴  total power loss in plate of thickness t  =  ∫
2

0

2222

.
32

t

m dx
lkdxfB

ρ
= 

ρ

2322

3

4 kldtfBm  

volume of the plate = d.l.t,  so that 

  Eddy current loss per unit volume  = 
ρ

2222

3

4 ktfBm  

It is thus seen that the eddy current loss per unit volume is proportional to the square of the 
thickness of the individual plates.  Thus for a given volume, if the thickness of the laminations 
is made very small, the eddy current losses can be minimised. 

Comparison of properties of eddy current and hysteresis losses 

1. Eddy current loss is proportional to the square of the frequency, while the hysteresis 
loss is proportional directly to the frequency. 

2. Eddy current loss is proportional to the square of the peak flux density, while the 
hysteresis loss is usually proportional to the 1.6th power of the peak flux density. 

3. Eddy current loss is proportional to the square of the thickness of the laminations 
while the hysteresis loss does not depend on thickness of laminations. 

4. Eddy current loss is dependant on the resistivity of the material, while the hysteresis 
loss is dependant on the Steinmetz constant of  the material. 

 

Analysis of Electromagnetic Circuits 

Electromagnetic circuits can be analysed in a manner similar to the analysis of resistive 
circuits. 

Consider the following two winding transformer wound on a three limb core. 
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It is  assumed that the cross-section does not change at the corners. 

m.m.f.s ℑ 1 and ℑ 2 are produced in the two windings and equal to N1I1  and  N2I2 . 

reluctances of each outer limb  Sl  = 
lro

l

A

l

µµ
, 

 reluctance of each part of  top and bottom yokes  Sy  = 
yro

y

A

l

µµ
, 

 reluctances of middle limb  Sm  = 
mro

l

A

l

µµ
,  [length of middle limb same as outer] 

If the fluxes flowing in the paths are  φl  (outer limbs, yokes) and  φm (centre limb), then an 
equivalent circuit similar to the electrical equivalent circuit may be drawn as follows. 

 

 

 

 

 

 

 

 

The fluxes can be calculated using laws similar to Ohm’s law and Kirchoff’s law as follows. 

 φm = φ l + φ l similar to Kirchoff’s current law 

 ℑ 1 + ℑ 2 = Sm φm + (2Sy + Sl ) φ l  similar to Kirchoff’s voltage law and Ohm’s law 

Only one loop was considered as both outer limbs are identical and must therefore have the 
same flux.  If the outer limbs were different, then there would have been one additional flux 
term and one additional equation. 

The only unknowns are φm and φ l  which can be calculated. 

In the case of three phase transformers, the winding  currents would have different phase 
angles, so that the corresponding mmfs too would have different phase angles.  The analysis 
of this would be similar to the analysis of three phase problems, but no equivalent being  there 
for inductances and capacitances in the corresponding equations. 

The above analyses are valid only in the linear  region of the magnetisation characteristic 
where the permeability can be assumed to be constant.  However, when  saturation  occurs, 
the analysis is more complicated. 

Analysis in the presence of a non-linear magnetisation characteristic 

Only a simple circuit having a non-linear magnetic characteristic 
and a series air gap will be considered to illustrate the method of 
analysis.  It is assumed that there is no fringing of flux around 
the air gap so that the flux density will be the same in both the 
air gap as well as the magnetic core.  Bm  =  Ba 

The characteristic of  the magnetic core is also known. 

The air gap has a linear characteristic with permeability µo. 

ℑ 1=N1I1 
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ℑ 2=N2I2 
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Let the cross section the core (and air gap) be A, 
the length of the magnetic path be lm in the 
magnetic material and  la  in the air gap. 

Let the number of turns in the coil be N and the 
current in the winding be I. 

Then from Ampere’s law 

 N I  =  Hm lm  +  Ha la 

for the air gap,   Ha = 
o

m

o

a BB

µµ
=  

∴  N I  =  Hm lm  +  
o

mB

µ  la,    or   Bm = - a Hm + b 

Since this equation has been written in terms of the parameters of the magnetic material, 
intersection of this straight line with the magnetisation characteristic would give the operating 
position. 

B 

H   Hm 

Bm  
Bm = − a Hm + b 


