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2.0  Network Theorems 
2.1  Basic Concepts 

The fundamental theory on which many branches of electrical engineering, such as electric power, electric 
machines, control, electronics, computers, communications and instrumentation are built is the Electric circuit 
theory.  Thus it is essential to have a proper grounding with electric circuit theory as the base.  An electric 
circuit is the interconnection  of electrical elements. 

2.1.1  Terminology 

The most basic quantity in an electric circuit is the electric charge q.  The law of conservation of charge states 
that charge can neither be created nor destroyed.  Thus the algebraic sum of the charges in a system does not 
change.  The charge on an electron is -1.602×10-19 C.  [Unit of electric charge is the coulomb (C)]. 

The rate of flow of electric charges or electrons constitute an electric current i.  By convention (a standard way 
of describing something so that everyone understands the same thing), the electric current flows in the opposite 
direction to the electrons. [Unit of electric current is the ampere (A)]. 

                 i dq
dt

=        and the charge transferred between time to and t is given by     q i dt
t

t

o

= ∫  

To move an electron in a conductor in a particular direction, or to create a current, requires some work or 
energy.  This work is done by the electromotive force (emf) of the source or the potential difference.  This is 
also known as voltage difference or voltage (with reference to a selected point such as earth). 

The voltage  vab  between two points  a and b  is the energy (or work) w  required to move a unit charge q from 
a to b.  [Unit of voltage is the volt (V)] 

 v dw
dqab =  ,  [Note: The suffixes ab need not be written when there is no ambiguity (more than one meaning) 

In addition to current and voltage, we need to know the power p handled by an electric circuit.  Power is the rate 
of doing work or transferring energy. [Unit of power is the watt (W)] 

Thus  p dw
dt

dw
dq

dq
dt

v i= = =. .  i.e.   p = v.i 

Energy is the capacity to do work. [Unit of energy is the joule (J)] 

The energy transferred from time to and t is given by  w pdt v i dt
t

t

t

t

o o

= =∫ ∫ .  

An Analogy (a similar example) 

Consider a tap in the garden supplied from an overhead tank.  It has a certain potential energy mg h joule.  We 
can also say that it has a potential of h metre.  [This is similar to saying we have a battery with a certain energy 
capacity E it and having a potential (or emf) of  E. for example, a car battery with an emf of 12 V and a 
capacity of 60 Ah or approximately 12×60×3600 J].  If we consider two tanks of the same height, but different 
capacity, they would have the same potential but different capacity depending on the volume of the tank 
corresponding to mg.  [Similarly different batteries could have the same emf (or potential) but have different 
capacities.  For example, a “12 V car battery” and “8 pen-torch batteries connected in series” would have the 
same emf, but obviously a completely different energy capacity].  Depending on how much we open the tap 
(changing the resistance to water flow of the path), the water will come out at different rate. [This is similar to 
connecting a battery to a circuit, and depending on the resistance of the circuit the current coming out will 
differ.]  The maximum pressure available at the tap is when the flow is a minimum, and there is no head loss 
due to friction in the pipe, and this corresponds to the potential of the tank h.  We can never get a pressure of 
more than h (except momentarily when we perhaps put our finger to partly block the flow of water). [Similarly, 
the maximum potential that is available to a load connected is E when no current is taken out of the battery 
(open circuit); and, there is no voltage drop in the internal resistance of the battery and wire resistance since 
there is no current.  We can never get a potential of more than E (except during a transient operation, and 
inductance and/or capacitance is there in the circuit)].  The water coming out from the tap could either be (a) 
absorbed by the ground (when it is lost) or (b) collected in a bucket (where it is stored and can be put back into 
the tank).  This is similar to the current going into a (a) resistor in which the energy gets dissipated (or lost) as 
heat to the surroundings and (b) either an inductor or capacitor where energy is stored in electromagnetic or 
electrostatic form and which can be retrieved later and is not lost.  
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2.1.2  Basic Circuit Elements 

Electric Circuits consist of two basic types of elements.  These are the active elements and the passive elements. 

An active element is capable of generating electrical energy. [In electrical engineering, generating or producing 
electrical energy actually refers to conversion of electrical energy from a non-electrical form to electrical form.  
Similarly energy loss would mean that electrical energy is converted to a non-useful form of energy and not 
actually lost. - Principle of Conservation of Mass and Energy]. 

Examples of active elements are voltage source (such as a battery or generator) and current source.  Most 
sources are independent of other circuit variables, but some elements are dependant (modelling elements such 
as transistors and operational amplifiers would require dependant sources). 

Active elements may be ideal voltage sources or current sources.  In such cases, the particular generated voltage 
(or current) would be independent of the connected circuit. 

A  passive element is one which does not generate electricity but either consumes it or stores it.  Resistors, 
Inductors and Capacitors are simple passive elements.  Diodes, transistors etc. are also passive elements. 

Passive elements may either be linear or non-linear.  Linear elements obey a straight line law.  For example, a 
linear resistor has a linear voltage vs current relationship which passes through the origin (V = R.I).  A linear 
inductor has a linear flux vs current relationship which passes through the origin (φ = k I) and a linear capacitor 
has a linear charge vs voltage relationship which passes through the origin (q = CV). [R, k and C are constants]. 

Resistors, inductors and capacitors may be linear or non-linear, while diodes and transistors are always non-
linear. 

Branch 

A branch represents a single element, such as a resistor or a battery.  A branch is a 2 terminal (end) element. 

Node 

A node is the point connecting two or more branches.  The node is usually indicated by a dot (   ) in a circuit. 

Loop or mesh 

A loop is any closed path in a circuit, formed by starting at a node, passing through a number of branches and 
ending up once more at the original node. 

 

 

 

 

 

Resistance R  [Unit: ohm (Ω)]  

 

 

The relationship between voltage and current is given by    v = R i,  or  i = G v,  G = conductance = 1/R 

R l
A

=
ρ      where ρ is the resistivity,  l  the length  and  A   the cross section of the material 

Power loss in a resistor = R i2.  Energy dissipated in a resistor w R i dt= ∫ . 2  

There is no storage of energy in a resistor. 

  Usage conductor semi-conductor insulator 

  Material Silver Copper Gold Aluminium Carbon Germanium Silicon Paper Mica Glass Teflon

  Resistivity (Ω m) 16.4×10-9 17.2×10-9 24.5×10-9 28×10-9 40×10-6 0.47 640 10×109 0.5×1012 1012 3×1012

 

v

i R non-inductive resistor 

Branch 

node

loop

same node
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Inductance L  [Unit: henry (H)]  

 

 

The relationship between voltage and current is given by   v N d
dt

L di
dt

= =
φ  

L N A
l

=
2µ    for a coil;  where µ is the permeability, N the number of turns, l  the length  and  A  cross 

section of core 

Energy stored in an inductor = ½ L i2 

No energy is dissipated in a pure inductor.  However as practical inductors have some wire resistance there 
would be some power loss.  There would also be a small power loss in the magnetic core (if any). 

Capacitance C  [Unit: farad (F)]  

 

 

The relationship between voltage and current is given by   i dq
dt

C dv
dt

= =  

C A
d

=
ε    for a parallel plate capacitor;  where ε is the permittivity, d  the spacing  and  A   the cross section 

of dielectric 

Energy stored in an capacitor = ½ C v2 

No energy is dissipated in a pure capacitor.  However  practical capacitors also have some power loss. 

2.2  Fundamental Laws 

The fundamental laws that govern electric circuits are Ohm’s law and Kirchoff’s laws. 

Ohm’s Law 

Ohm’s law states that the voltage v across a resistor is directly proportional to the current i flowing through it. 

  v ∝  i,    v = R . i     where  R is the proportionality constant. 

A short circuit in a circuit element is when the resistance (and any other impedance) of the element approaches 
zero. [The term impedance is similar to resistance but is used in alternating current theory for other 
components] 

An open circuit in a circuit element is when the resistance (and any other impedance) of the element approaches 
infinity. 

In addition to Ohm’s law we need the Kirchoff’s voltage law and the Kirchoff’s current law to analyse circuits.   

Kirchoff’s Current Law 

Kirchoff’s first law is based on the principle of conservation of charge, which requires that the algebraic sum of 
the charges within a closed system cannot change.  Since charge is the integral of current, we have Kirchoff’s 
Current Law that states that the algebraic sum of the currents entering a node (or a closed boundary)  is zero . 

 

Σ i = 0 

 

 
                               i1 + i2 − i3 + i4 − i5  = 0                                 − ia − ib + ic – id + ie = 0 

i1 i2 

i5 
i4 

i3 

ia 

ib 

ic 

v

i C

v

i L not commonly used 

id 

ie 
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Kirchoff’s Voltage Law 

Kirchoff’s second law is based on the principle of conservation of energy, which requires that the potential 
difference taken round a closed path must be zero. 

Kirchoff’s Voltage Law states that the algebraic sum of all voltages around a closed path (or loop) is zero.  

            Σ v = 0 
      − v1 + v2 + v3 + v4 = 0 
depending on the convention, you may also write 

        v1 − v2 − v3 − v4 = 0 
Note:  v1, v2 … may be voltages across either 
active elements or passive elements or both 
and may be obtained using Ohm’s law. 

Series Circuits 

 

 

When elements are connected in series, from Kirchoff’s current law,  i1 = i2 = i   and from Kirchoff’s Voltage 
Law,  v1 +  v2 = v.  Also from Ohm’s Law,    v1 = R1 i1 ,   v2 = R2 i2 ,   v  = R  i  

     ∴ R1 i + R2 i  = R  i,  or  R = R1 + R2   

Also,  v
v

R i
R i

R i
R i

R
R

1

2

1 1

2 2

1

2

1

2
= = = ,  and  v

v
R

R R
v
v

R
R R

1 1

1 2

2 2

1 2
=

+
=

+
,  ……..voltage division rule 

That is, in a series circuit, the total resistance is the sum of the individual resistances, and the voltage across the 
individual elements is directly proportional to the resistance of that element. 

Parallel Circuits 

 

 

 

When elements are connected in parallel, from Kirchoff’s current law,  i1 +  i2 = i   and from Kirchoff’s Voltage 
Law,  v1 =  v2 = v.  Also from Ohm’s Law,  v1 = R1 i1 ,   v2 = R2 i2 ,   v  = R  i  

∴ v
R

v
R

v
R R R R

R
R R

R R1 2 1 2

1 2

1 2

1 1 1
+ = = + =

+
    or       or     

Also,  i
i

v
R

v
R

R v
R v

R
R

1

2

1
1

2
2

2

1

2

1
= = = ,  and  i

i
R

R R
i
i

R
R R

1 2

2 1

2 1

2 1
=

+
=

+
,  ……..current division rule 

That is, in a series circuit, the total resistance is the sum of the individual resistances, and the voltage across the 
individual elements is directly proportional to the resistance of that element. 

Example 

Using Ohm’s Law and Kirchoff’s Laws 

I = I1 + I2 ,   

12−10  = 1 I1 − 2 I2,   

10 = 2 I2 + 5 I + 17 I 
Solving gives 

v1 v2 

v4 
v3 

loop 

1 Ω 

2 Ω 

5 Ω 

17 Ω12 V 
10 V 

A B 

E 

I I1 
I2 V 

v1 

i1 R1 

v2

i2 R2

v

i R 

≡

v

i R 

≡

v1 

i1 R1 

v2 

i2 R2 

i 



EE 101 Electrical Engineering 2001/02 Network Theorems 

University of Moratuwa - JRL/Oct2001 15

I1 = 1A ,  I2 = − 0.5A , I = 0.5A , VAE = 11V , V = 8.5V 

2.3 Network Theorems 

Complex circuits could be analysed using Ohm’s Law and Kirchoff’s laws directly, but the calculations would 
be tedious.  To handle the complexity, some theorems have been developed to simplify the analysis.  It must be 
emphasised that these theorems are applicable to circuits with linear elements only. 

2.3.1 Superposition Theorem 

In a linear circuit, if independent variables   x1 gives y1  and   x2 gives y2 

then, an independent variable  k1 x1 + k2 x2   would give k1 y1 + k2 y2 

where k1   and  k2  are constants. 

In the special case,  when input is x1 + x2  the output would be y1 + y2 

The Superposition theorem states that the voltage across (or current through) an element in a linear circuit is the 
algebraic sum of the voltages across (or currents through) that element due to each independent source acting 
alone [i.e. with all other sources replaced by their internal impedance. 

 

 

 

 

 

 

Example 

 

 

 

 
 

From sub-circuit 1, 
I Is r1 1

12
1 2 5 17

4 23529 2
2 5 17

4 23529 0 35294=
+ +

= ∴ =
+ +

× =
// ( )

.
( )

. .A,   A
 

similarly, 
I Is r2 2

10
2 1 5 17

3 38235 1
1 5 17

3 38235 0 14706=
+ +

= ∴ =
+ +

× =
// ( )

.
( )

. .A,   A
 

∴ from superposition theorem, I = Ir1 + Ir2 = 0.35294 + 0.14706 = 0.50000 = 0.5 A (same result as before) 

2.3.2  Thevenin’s Theorem 
Any linear active bilateral single-port (a component may be connected across the 2 terminals of a port) network 
can be replaced by an equivalent circuit comprising of a single voltage source Ethevenin and a series resistance 
Rthevenin (or impedance Zthevenin in general) . 

 

 

 
 

If the port is kept on open circuit (current zero), then the open circuit voltage of the network must be equal to 
the Thevenin’s equivalent voltage source.  If all the sources within the network are replaced by their internal 
resistances (or impedances), then the impedance seen into the port from outside will be equal to the Thevenin’s 
resistance (or impedance). 

 

 

 

Port ≡
Linear 
Active 

Bilateral 
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Ethevenin

Rthevenin
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17 Ω 12 V 
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A B 

E 

I I1 
I2 V 

⇒ 
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E 
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y 
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Passive 
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Es1 

Is2 

Es1 
≡ +

Is2 

Ir Ir1 Ir2

Ir = Ir1 + Ir2 

1 Ω 

2 Ω 

5 Ω 

17 Ω 12 V 
10 V 
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E 

I I1 
I2 V 

E 

17 Ω
≡ +

1 Ω
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5 Ω

12 V 
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B 
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2 Ω 

5 Ω 

17 Ω
10 V 

A 
B 

E 

Ir2 

Vr2 Is2 
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If we are interested in determining V and/or  I, open circuit the port BE as shown (temporarily disconnect 17 Ω 
resistor). 

Then, I1-oc = − I2-oc = (12 − 10)/(1 + 2) = 0.66667 A ,  and VAE-oc = 12 -  1 × 0.66667= 11.33333 V 

∴ Vthevenin  =  Voc = 11.33333 - 5 × 0  = 11.33333 V 

With sources replaced by their internal resistances , 

     Zthevenin = Zin = 5 + 1//2 = 5.66667 Ω 

∴ original circuit may be replaced by the Thevenin’s equivalent 
circuit shown. 
∴I = 11.33333/(5.66667+17) = 0.4999998 = 0.5 A (same as before) 

and V = 17 × 0.5 = 8.5 V (same as before) 

2.3.3  Norton’s Theorem 
Any linear active bilateral single-port network can be replaced by an equivalent circuit comprising of a single 
current source Inorton and a shunt conductance Gthevenin (or admittance Ythevenin in general) .  
Norton’s theorem is the dual theorem of Thevenin’s theorem where the voltage source is replaced by a current 
source  . 

 

 

 

If the port is kept on short circuit (voltage zero), then the short circuit current of the network must be equal to 
the Norton’s equivalent current source.  If all the sources within the network are replaced by their internal 
conductances (or admittances), then the admittance seen into the port from outside will be equal to the Norton’s 
conductance (or admittance). 

Example 

 

 

 

 
 

Consider obtaining the equivalent circuit across the points AE.  Short circuit AE as shown. 

Then  Isc = I1-sc + I2-sc   and   I1-sc = 12/1 = 12 A,  I2-sc = 10/2 = 5 A,  so that  Isc = 12 + 5 = 17 A 

i.e.  Inorton = 17 A. 

Total conductance of a parallel circuit is the addition of the individual conductances. 

∴ Gnorton = 1/2 + 1/1 = 1.5 S 

∴ Norton’s equivalent circuit is  
The current I is given by  17 0 6667

0 6667 5 12
0 50002 0 5×

+ +
= =

.
.

. .  A  

(same result as before) 

2.3.4  Compensation Theorem 
The compensation theorem is useful when one component in a circuit is changed by a small amount ∆Ζ to find 
the changes without recalculating the full network.   
If the impedance of a branch in a network carrying a current I is changed by a finite amount ∆R (or ∆Z), then 
the change in the currents in all other branches of the network can be obtained by inserting a voltage source of 
−I∆Z into that branch and replacing all sources with their internal resistance (impedance). 
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Example 
from earlier calculations, I = 0.5 A 

Consider the change in I when 17 Ω resistor is changed by a small 
amount to 18 Ω. 

∆R = +1 Ω,          - I ∆R = −0.5 × 1 = −0.5 V 

∴  changes in the current can be obtained from the circuit 

∆I = −
+ +

=
−

= −
0 5

18 5 2 1
0 5

23 6667
0 02113.

//
.

.
.  

∴ I = 0.5 - 0.02113 = 0.4789 A 

[As an exercise you may check this value using the other 
methods]. 

2.3.5  Millmann’s Theorem 

If a number of admittances Y1, Y2, Y3 ….Yp…. Yq, …Yn are 
connected together at a common point S, and the voltages of the 
free ends of the admittances with respect to a common reference 
N is known to be V1N, V2N, V3N ….VpN…. VqN, …VnN, then the 
voltage of the common point S with respect to the reference N is 
given as  

V
Y V

Y
SN

p pN
p

n

p
p

n= =

=

∑

∑
1

1

 

Proof is based on Kirchoff’s Current Law at node S      ( )I I Y V Vp
p

n

p p pN nN
=

∑ = = −
1

0 ,  and  

Example 

Four resistances, 2 Ω, 1 Ω,  4 Ω, and 2.5 Ω are connected in star at a common point S across AS, BS, CS and 
DS.  If the potentials of the other ends of the respective resistances with respect to earth E are VAE = 100 V, VBE 
= 80 V, VCE = 60 V and VDE =120 V, find the potential of the star point with respect to earth VSE. 

Using Millmann’s theorem,  

VSE =
× + × + × + ×

+ + +
=

+ + +
+ + +

= =
1

2 100 1
1 80 1

4 60 1
2 5 120

1
2

1
1

1
4

1
2 5

50 80 15 48
0 5 1 0 25 0 4

193
2 15

89 77.

.
. . . .

.  V  

Note:  Millmann’s theorem can also be applied when a number of practical generators are connected in parallel 
to find the equivalent source.  Thus theorem is also sometimes referred to as the Parallel Generator theorem. 

2.3.6  Maximum Power Transfer Theorem 

The maximum power transfer theorem states that the maximum power that can be supplied from a given source 
with internal resistance rs  to a purely resistive load R occurs when R = rs . [A slightly different result occurs in 
the case of complex loads, but where the Load impedance becomes equal to the conjugate of the source 
impedance, but this is outside the scope of this course] 

Proof:  Power delivered to load = P = V. I,   where  I E
r R

V R I
s

=
+

=, .  

         

( )
P R I E

R r
R

s

= =
+

. .2
2

2
 ,  for maximum power transfer to the load 

R 
E 

A 

B 

I 
V rs 

1 Ω 

2 Ω 

5 Ω 

17 Ω 12 V 
10 V 

A B 

E 

I I1 
I2 V 

2 Ω 

1 Ω 5 Ω

18 Ω 

A B 

E 

∆I ∆I1 
∆I2 ∆V 

 0.5 V 

S Y1 

Y2 

Y3 

Yp 

Yn 
n 1 

2 

3 

p 
N 

reference 

Yq 
q 
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( )

( )( )d P
d R

E
R r

R r R R r
s

s s= =
+

+ − +0 1 2
2

4
2. . . ( ) ,   or R + rs - 2 R = 0,   i.e.   R = rs 

Under this condition, it can be seen that  V=E/2  and  P = E2/4rs 

How do we know that this corresponds to maximum power.  We do not have to take the second derivative, but 
can reach that conclusion from physical considerations.  We know that when R = 0  we have a short circuit 
(V=0) and no power is delivered to the source (of course a lot of power can come out of the source and get 
wasted), and when  R = ∞  we have an open circuit (I=0) when again no power will be delivered.  Therefore a 
physical maximum magnitude must occur in between these two values.  

Example 

A certain car battery has an open circuit voltage of 13.5 V and an internal resistance of  0.015 Ω.  Determine the 
maximum power that the battery can supply to a load.  Determine the voltage of the load under these conditions 
and the value of the resistance of the load. 

Solution 

From maximum power transfer theorem, the load resistance must equal the source resistance. 

∴load resistance = 0.015 Ω 

Maximum power that can be transferred = 13.52 /(4×0.015) = 2882 W = 2.882 kW 

Voltage across load under these conditions = 13.5/2 = 6.75 V 

In practice, it would not be acceptable for the voltage to drop to as low as 6.75 V for a car battery.  We would 
expect that it would not drop much below 12 V.  Thus the actual maximum power that can be obtained keeping 
other constraints would be significantly less than 2.882 kW. 

2.3.7  Star-Delta Transformation 

 

 

 

 

 

 

A star connected network of three admittances (or conductances)  YAS, YBS, and YCS connected together at a 
common node S can be transformed into a delta connected network of three admittances YAB, YBC, and YCA 
using the following transformations. 

Y
Y Y

Y Y Y
Y

Y Y
Y Y Y

Y
Y Y

Y Y YAB
AS BS

AS BS CS
BC

BS CS

AS BS CS
CA

CS AS

AS BS CS
=

+ +
=

+ +
=

+ +
.

,
.

,
.

 

Note: You can observe that in each of the above expressions if we need to find a particular delta admittance 
element value, we have to multiply the two values of admittance at the nodes on either side in the original star-
network and divide by the sum of the three admittances.  

Nodal Mesh Transformation theorem 

The nodal mesh transformation theorem is the more general transformation between a 
number of admittances connected together at a star point S and the corresponding mesh-
connected network having many more elements.  In this case, the equivalent mesh-
admittance element Ypq between two nodes p and q is as given.  You can see that the star-
delta transformation is a special case of the nodal mesh transformation.  If there are n 
branches in the star-network, it can be easily seen that the mesh-network will have m=½ 
n(n-1) branches.  

∑
=

= n

r
rS

qSpS
pq

Y

YY
Y

1

.
 

YAS 

YBS YCS 

A 

B C 

YAB 

YBC 

YCA 

A 

B C 

≡ 
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When n=3, m = ½ n(n-1)=3   but when n=5, m=10.  It will be easily seen that the star and mesh networks will 
have the same number of elements only when n=3;  otherwise m>n always.  Thus the reverse process of 
transformation will only be possible when n=3.  For this case only the Delta-Star transformation is also defined. 

 

Delta-Star Transformation 

 

 

 

 

 

 

A delta connected network of three impedances (or resistances) ZAB, ZBC, and ZCA can be transformed into a 
star connected network of three impedances ZAS, ZBS, and ZCS connected together at a common node S using the 
following transformations. [You will notice that I have used impedance here rather than admittance because 
then the form of the solution remains similar and easy to remember.] 

Z Z Z
Z Z Z

Z Z Z
Z Z Z

Z Z Z
Z Z ZAS

AB CA

AB BC CA
BS

AB BC

AB BC CA
CS

CA BC

AB BC CA
=

+ +
=

+ +
=

+ +
. , . , .

 

Note: You can observe that in each of the above expressions if we need to find a particular delta element value, 
we have to multiply the two impedance values on either side of node in the original star-network and divide by 
the sum of the three impedances. 

2.4  Introduction to Nodal and Mesh Analysis 

When we want to analyse a given network, we try to pick the minimum number of variables and the 
corresponding number of equations to keep the calculations to a minimum.  Thus we would normally work with 
either currents only or voltages only.  Let us consider an example to illustrate this. 

2.4.1  Mesh Analysis 

The usual practice for a network such as this is to mark only two 
independent currents I1 and I2 and the other current I would become 
a dependent variable (based on Kirchoff’s current law).  Then we 
write down the Kirchoff’s voltage law equation for the two 
identified loops.  [This is how we solved it in the first place]. Mesh 
analysis makes use of this, but marks currents in a different manner. 

In mesh analysis, we mark independent mesh currents im1 
and im2 as shown.  The branch currents can all be expressed 
in terms of this mesh currents. 

I1 = im1, I2 = − im1 + im2 , I = im2 

Kirchoff’s voltage law equations are written in terms of 
these mesh currents  

12 = 1 im1 + 2( im1 − im2 )−10 ,  10 =  − 2( im1 − im2 ) + 5 im2+ 17 im2 

These equations are solved in the usual manner to give the mesh currents.  Using the mesh current the branch 
currents may be determined. 

2.4.2  Nodal Analysis 

In nodal analysis, basically we work with a set of node voltages.  The voltage sources would also usually be 
replaced by equivalent current sources.  Consider again the earlier circuit.  This can be replaced by the circuit 
shown alongside.  The node E would usually be taken as the reference and given a potential of zero. 
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Let VAE  and  VBE be the potentials (or voltages) of A and B with respect to the reference E.  From these 
voltages and using Ohm’s law the currents in the individual resistors (1 Ω, 2 Ω, 5 Ω and 17 Ω) can be written as 
VAE/1 , VAE/2, (VAE− VBE)/5 and VBE/17.  

Applying Kirchoff’s current law to node A and to node B, we have 

 12/1 − VAE/1+10/2− VAE/2 − (VAE − VBE)/5 = 0,     also   (VAE − VBE)/5 = VBE/17 

i.e.  17  − VAE− VAE/2 − VAE/5 + VBE/5 = 0,     also   VAE/5 − VBE/5 = VBE/17 

These equations may be solved to give the node voltages at A and B.  The branch currents can then be obtained.  

In fact we need not even take node B, but take the branch (5+17) as connected to A. 

12/1 − VAE/1+10/2− VAE/2 − VAE /22 = 0,   or  17 - VAE (1 + 0.5 + 0.04545) = 0,  i.e. VAE = 11.0000 V 

This is the same result we had in the first example with Ohm’s law and Kirchoff’s laws and you can see that 
only one equation was required to obtain the answer. 

Both the Mesh Analysis and Nodal Analysis theory is usually built up using matrices so that they may be used 
for analysis on the computer.  However this section is considered to be beyond the scope of this course. 

2.5  Introduction to Waveform Analysis 

Waveforms of voltage and current can take various forms.  They may take a constant dc value (figure a), a step 
waveform (figure b), an exponentially decaying shape (figure c), a sinusoidal waveform (figure d), a rectangular 
waveform (figure e), a triangular waveform (figure f) and many other shapes. 

 

 

 

 

You will notice that waveforms a, b and c are unidirectional, where as d, e and f have positive and negative 
values.  You will also notice that d, e and f  are repetitive waveforms (periodic).  Also  d and e  have mean 
values which are zero, where as f  has a positive mean value.  Repetitive waveforms can always be represented 
by a combination of waveforms with mean value zero (alternating component) and with a positive or negative 
mean value (direct component). 

The peak value of a waveform is not indicative of its useful value.  On the other hand a non-zero waveform can 
have a zero mean value.   

          dtti
T

I
T

mean .)(1
0∫=      

and    ∫∫ −=
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T
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T
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Thus the mean value alone is not useful.  One method commonly used is to invert any negative part of the 
waveform and obtain the average value of the rectified waveform.  This too is not fully indicative of the useful 
value.  The useful value or effective value of a alternating waveform is the value with which the correct value 
of power can be obtained. 
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We can see that the effective value is obtained by taking the square root of the mean of the squared waveform.  
Because of the method of obtaining this value, it is usually called the root-mean-square value or rms value. 
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