STUDENT HANDBOOK 2021 Intake

DEPARTMENT OF CHEMICAL AND PROCESS ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA

CONTENT

CONTENT	1
THE DEPARTMENT OF CHEMICAL & PROCESS ENGINEERING .	1
WELCOME TO THE DCPE FAMILY!	4
WHAT IS CHEMICAL AND PROCESS ENGINEERING?	5
WHY STUDY CHEMICAL AND PROCESS ENGINEERING?	6
CAREER OPPORTUNITIES	7
TESTIMONIALS	
THE JOURNEY OF DCPE	
ACADEMIC STAFF MEMBERS	
UNDERGRADUATE DEGREE PROGRAM	
Graduate Program Outcomes (POs) Profile	
Program Educational Objectives	
Graduation Credit Requirement	27
Faculty Academic Committee Coordinator	27
Semester Coordinators	27
Teaching and Learning	
Curriculum	31
Focus Area	
Minors	
Faculty Electives	41
Humanities Subjects	47
Modules	49
Semester I	49
Semester II	56
Semester III	60

Semester IV 64
Semester V
Industrial Training
Semester VI77
Semester VII
Semester VIII
Research
Comprehensive Design Project 106
Industrial Training 107
Awards Available for DCPE Students
INDUSTRY COLLABORATION 111
COLLABORATIONS WITH INTERNATIONAL UNIVERSITIES 112
SPECIAL EVENTS AND PROGRAMS 113
SOCIETIES/CLUBS
LABORATORY FACILITIES AND RESOURCES 117
OTHER INFORMATION
FLOOR PLAN OF DCPE CENTER 127
FLOOR PLAN OF DCPE NORTH AND SOUTH WINGS 129

THE DEPARTMENT OF CHEMICAL & PROCESS ENGINEERING

Vision

Delivering Chemical and Process Engineering knowledge, skills and innovation for a sustainable tomorrow

<u>Mission</u>

The Department of Chemical and Process Engineering will strive to educate, conduct research and offer consulting services with dedication, devotion and commitment and aim to be a place of excellence through internationally recognize programs for the benefit of the society

The Department of Chemical and Process Engineering (DCPE) at University of Moratuwa is one of the premier engineering departments in the country. Being operated with a vision to standardize, optimize and scale up the production processes in a commercially viable manner through sustainable utilization of raw materials, the DCPE has its unique mission to satisfy its objectives.

The DCPE offers the Honours Degree in Bachelor of Science of Engineering in the field of Chemical and Process Engineering. Environmental Engineering, Energy Engineering, Food and Bioengineering, and Polymer Engineering, Petroleum Engineering are the focus areas available in the DCPE for the undergraduates. DCPE also offers programs for postgraduates. M.Sc./ PG Dip. in Polymer Technology and M.Sc./ PG Dip. in Sustainable Process Engineering are the taught M.Sc. programs available and DCPE conducts research programs leading to M.Sc., M.Phil., and Ph.D. degrees.

The competency and friendliness of academic and academic support staff members, the stimulating atmosphere of the department with well-equipped laboratory facilities and many other valuable resources offer the students a better learning environment to equip them with necessary knowledge and skills required for the Chemical and Process Engineering graduates.

Being established in 1972 only with 8 undergraduates, DCPE proudly demonstrates much evidence for its immense growth during its journey through the years. The number of undergraduate student intake has been increased up to 80 students per batch, and at present, the student body of the DCPE is consisted with over 300 undergraduates studying at various levels of their bachelor's degree program and postgraduate programs.

Research, being an integral part of the curriculum of undergraduate and

postgraduate studies, not only boosts the research potential of the students but also benefits the field of Chemical and Process Engineering through the huge contribution of better solutions and innovative ideas into it. The availability of well-functioning laboratory facilities with well-guided supervision enhances the value of the research activities.

The collaboration of the DCPE with the industry is also huge. The industry facilitates the DCPE with internship opportunities, competent and well-experienced mentors for the mentoring programs, and to organize field visits in order to enhance the competencies of the undergraduates. The close relationship with the industry facilitates the prospective fresh graduates from the DCPE to find career opportunities with ease. The Department Industry Consultancy Board (DICB) strengthens the bond between the department and industry while improving the value of the degree program to mold the proficiency of the future-graduates to fulfill the industrial requirements.

The strong affiliation between the department and industry is beneficial for the industry as well. The DCPE offers consultancy services for the industry through various industrial projects and research to grant the industry with many valuable innovations and better solutions for

the sustainable development of the industry and the country.

The DSI incubator provides proof for the strong bond between the department and the industry. The industry and academic institutes also offer the prospective students of DCPE with many academic awards and scholarship positions in recognition of their competencies.

The DCPE not only encourages and promotes the students to associate with professional institutes and various societies and associations but also encourages and facilitates many extra-curricular activities and sports activities in order to enhance their knowledge and soft-skills as prospective professionals.

The time at the DCPE under the wings of well-qualified and well-experienced academic staff, in a well-established and well-maintained stimulating environment is definitely a career developing and an exciting experience that every student should encompass.

The DCPE at the University of Moratuwa is a blessing in every aspect as it constantly strives to deliver Chemical and Process Engineering knowledge, skills and innovation for a sustainable tomorrow through education, research and consultancy services with dedication, devotion and commitment.

Contact Information

Department Office

E-mail	: cpe@uom.lk	
Phone (General)	: +94 112 640 051	Ext. 4100
Direct	: +94 112640 330	
Fax	: +94 112 650 622	
Website	: http://www.cpe.mrt.ac.lk	

Head of the Department: Prof. Shantha Egodage

E-mail	: head-cpe@uom.lk	
Phone (General)	: +94 112 640 051	Ext. 4101
Direct	: +94 112 640331	
	+94 112 650 281	

Online presence

- : University of Moratuwa Department of Chemical & Process Engineering
- : Chemical and Process Engineering Student Society University of Moratuwa

: Department of Chemical & Process Engineering, University of Moratuwa

- : Department of Chemical and Process Engineering UOM
- : Chemical Engineering Students' Society UOM

WELCOME TO THE DCPE FAMILY!

As the Head of the Department, I would like to take this opportunity to thank you for joining the Department of Chemical and Process Engineering (DCPE)."

The DCPE at the University of Moratuwa is one of the premier engineering departments in the country. Being operated with a vision to standardize, optimize and scaleup the production processes in a commercially viable manner through sustainable utilization of raw materials, the department has its unique mission to satisfy its objectives.

The department named Chemical Engineering, was first established by gazette notification on 15th February 1972 at Katubedda Campus of the University of Ceylon with eight students. The degree program, originally termed as Chemical Engineering and Fuel Science, was restructured, and renamed as Chemical and Process Engineering in 1998.

The academic staff of the DCPE consists of twenty-two fulltime members including two senior professors, eight professors and six senior lecturers, who are all well-qualified in the field and lead high quality research in a wide spectrum of areas. In addition, the Department is assisted by a dedicated team of academic support and technical staff. The Department has strong links with the industry and conducts collaborative tasks of research and development. Presently, we have one of the oldest incubators in the University for conducting product and process development for four companies of the DSI Group.

At present, the DCPE accommodates 400 undergraduates (85 in each intake) and postgraduate students. Our students demonstrate excellence not only in academic activities but also in sports and other extracurricular activities, for which the Chemical Engineering Student Society (ChESS) offers a paramount platform where several annual events of a wide variety are organized. In addition, our alumni, around 1200 graduates, have rewarding careers in the chemical and process industries, universities, and research institutes, both locally and internationally. Many of our most dedicated alumni made their way into outstanding leadership roles and continue to support the Department in a variety of ways.

Historically CPE students have shown the excellence in sports and other extra-curricular activities. Chemical Engineering Student Society (ChESS) is the hub for the student activities in the department and numbers of annual events are organized by the CPE students.

Wish you all the best for your future endeavors in the DCPE.

Prof. (Mrs.) Shantha Egodage Head of the Department

WHAT IS CHEMICAL AND PROCESS ENGINEERING?

Chemical and Process Engineering is the profession in which knowledge of mathematics, chemistry, physics, biology and other natural sciences gained by study, experience and practice is applied with judgment to develop economical ways of using materials and energy for the benefit of mankind.

More typically, they turn raw materials into valuable products. The necessary skills encompass all aspects of design, testing, operation, control, scale-up, and optimization. Hence this requires a detailed understanding of the various "unit operations", such as distillation, mixing, evaporation, crystallization, and biological processes that make these conversions possible.

Resting on the above foundations the Chemical and Process Engineering sprout higher and higher utilizing mass, momentum and energy transfers hand along with thermodynamics and chemical kinetics. It would be correct to say that the term Chemical in Chemical and Process Engineering refers more towards the knowledge and experience in terms of the applied sciences.

The breadth of scientific and technical knowledge inherent in this profession has caused world scientists to describe the Chemical and Process Engineer as the "Universal Engineer".

WHY STUDY CHEMICAL AND PROCESS ENGINEERING?

Why Chemical Engineering?

- A growing global profession
- A large manifold of <u>occupations</u> with <u>diverse professional experience</u> and <u>excellent career progression</u>
- To make the path for becoming an <u>entrepreneur</u> with your own passion for engineering, technology or management.
- To actively <u>contribute towards solving urgent issues</u> such as the energy crisis and pollution, and <u>work towards achieving sustainability</u>
- To <u>make a difference</u> not only in your economical, mental and career satisfaction but to satisfy the aspirations and necessities of the society

CAREER OPPORTUNITIES

There are a countless number of industries where Chemical and Process Engineering is used in. As examples petroleum and industries. mineral petrochemical processing, advanced materials, food and beverage processing, pharmaceutical, biotechnological industries, polymer industries, ceramic industries, electronic base industries and much more. Chemical and Process Engineering works hold in hands with fellow engineering disciplines such as mechanical. electrical and electronics, civil and material science.

The broad basis of their scientific, engineering, technological and management education upgrade the applications of the Chemical and Process Engineering skills in any other sister fields such as business, supply chain, process analysis, health and safety and etc. which do not seem like a result of chemical and Process Engineering evolution.

Chemical Engineers might expect to work in,

- Chemical, petroleum and petrochemical industries
- Power generation
- Steam engineering
- Environmental protection and natural resource utilization
- Renewable energy engineering
- Food and beverage processing
- Biochemical and biomedical engineering
- Pharmaceutical industry
- Processing of electronic and photonic devices
- Polymer engineering
- Computer aided process control engineering

- Advanced materials manufacturing industries
- Ceramic industries
- Textile industries and etc.

Some **local companies** where our graduates play key roles:

- Ceylon Petroleum Corporation
- INSEE Cement, Puttlam
- Melwa Cement, Mirijjawila
- Unilever Sri Lanka Ltd
- Hemas Holdings PLC
- Industrial Solutions Lanka (Pvt) Ltd
- Sri Lanka Institute of Nanotechnology (Pvt) Limited
- IFS R&D International (Pvt) Ltd, Sri Lanka
- MAS Holdings (Pvt) Ltd
- Lanka Sugar Company Pvt Ltd
- Nestle Lanka PLC
- Ceylon Biscuits Ltd
- Asian Paints (Pvt) Ltd
- Fonterra Brands Lanka
- Ceylon Cold Stores

Some **foreign companies** where our graduates play key roles:

- Veolia Water Technologies, USA
- Ontario Nuclear Power Generation, Canada
- Aker Solutions, Norway
- Wood Consultancy, Norway
- Safetec Nordic AS, Norway
- Keppel Offshore & Marine, Singapore
- Ecochem Bangladesh Pvt Ltd, Bangladesh
- Schlumberger, USA
- Abu Dhabi Oil Co., Ltd., UAE
- IFS R&D International (Pvt) Ltd, Norway

TESTIMONIALS

Isuru Lakshan - DCPE 2016 batch Gold medalist, 2021 General Convocation

With a passion for chemistry from my A/L's, I always wanted to be a Chemical and Process Engineer when I got selected to the University of Moratuwa. But with my time in the department, I realized that chemical engineering is not chemistry but also a broader discipline related to each and everything we use in our day-to-day lives. The fundamentals of Chemical and Process Engineering are applied in almost all industries even though they are not significantly visible to the outside. From simple mass and energy balance to more complex situations, from simple process controls to advanced process controllers, modeling and simulations and many more all lie in here.

The curriculum for this degree program is well developed to enhance the way of thinking of undergraduates towards the thinking of a professional engineer. The academic staff of the department works their best to share their knowledge with undergraduates in an unbelievably friendly manner. That guidance helped me a lot undergraduate throughout my degree program. A well-guided industrial exposure through industrial training helped me a lot to understand the gap between theoretical knowledge that we gain in the university and the practical applications of those in reallife. With the evolving technologies, it creates a gap between current technologies and future technologies so chemical and process engineering has good research potential to fill up those gaps to change the future of the world for the betterment.

So Being a Chemical and process engineer will provide you with a solid career path either in academia or industry.

Kalindu Fernando 2014 batch Ph.D. candidate CBE, HKUST

From my school days, I was curious about how people change various materials to make innovative useful products. After my schooling, I entered the faculty of Engineering, at the University of Moratuwa in search of learning how to design and transform the raw materials via value addition to finished products. Then, I found that Chemical and Process Engineering is the best option for me to explore my dreams.

I was desirous on learning the fundamentals of Chemical and Process Engineering and was able to obtain a first-class honors degree with a minor specialization in Entrepreneurship. Then, I had a great desire to widen my knowledge further, and I started my postgraduate studies at Hong Kong University of Science & Technology (HKUST) after briefly serving at the department as a graduate instructor.

Currently, I am a prestigious awardee of the Hong Kong Ph.D. Fellowship Scheme (HKPFS) at the Department of Chemical and Biological Engineering at the Hong Kong University of Science & Technology. I am focusing on developing novel models to predict the functional behavior of biomolecular systems more efficiently and

STUDENT HANDBOOK 2021 INTAKE

affordably using Molecular Dynamics and Monte Carlo simulations.

Although the world trends are dynamic, if you follow your passion with dedication, there are plenty of doors willing to open for you to be an expert in the field of your choice!

Malsha Samarasiri (2014 batch) PhD Student Nanyang Technological University, Singapore.

After hearing about the unfortunate story of the identification of toxic heavy metals in Sri Lankan rice, I obtained my inspiration for being a food researcher. Since food engineering is one subarea under Chemical and Process Engineering and knowing about the friendly culture in DCPE, I selected this field without any hesitation. It was the turning point of my journey where I learnt many things, developed both technical and personal skills and met a supportive community.

I graduated from DCPE with a specialization in Food and Biochemical Engineering. After working at GlaxoSmithKline Pharmaceuticals and IFS Sri Lanka, I was fortunate to join DCPE as a lecturer for one year. There I gained good academic exposure and great opportunities. Currently, I am a second-year PhD student at NTU under the Food Science Technology program and researching on sensory properties of mushrooms for the potential as a meat alternative.

Chemical and Process Engineering is a field with the scope of "microchips to potato chips" where you can fly beyond the limits. "Love what you do; do what you love!"

Dhanuka Anthony (2011 batch) Head of Operations and Production -Stretchline Holdings, Indonesia

I currently work in the capacity of a Regional Management Trainee-Operation Management for Stretchline Holdings which is a part of the MAS group. I am currently based in Indonesia and will be transferred to the operations in China by the end of the year. Although I am technically not working along the traditional lines of what a Chemical & Process Engineering degree stipulates the amount of relevance is quite high. I was previously working at GSK also as a management trainee.

The best thing about the Chemical and Process Engineering at UOM is that the options it opens are limitless. You can find relevance to almost any industry in at least a few subject matters. This comes as a huge advantage when approaching the job market as it does not limit you to a small number of companies. Especially working in the manufacturing sector Unit Operations, Heat and Mass transfer etc., are subject matter that come in handy at any point in time. Apart from that soft skills improvement is definitely a big advantage in standing out in the job market.

Samavath Mallawarachchi (2011 batch) PhD Student – Texas A&M University

Department of Chemical and Process Engineering, University of Moratuwa was the place which laid the foundation for my

Nuclear

Wijayaratne

career as an engineer. The four years spent at the department imbued me with a wide spectrum of knowledge and skills, which prepared me for pursuing a doctoral degree in Biological Engineering. At the end of my undergraduate degree, I was able to obtain the gold medal for the highest GPA in DCPE, which I believe is a great achievement. During my years as a graduate student, I have been able to engage in research projects in a variety of areas including drug delivery, enzyme kinetics and molecular simulations. The fundamentals learned at DCPE allowed me to successfully work over multiple research areas. Also, it allowed me to look at the research problems in an engineering perspective and see how research can be applied to provide solutions to real life problems.

Department of Chemical and Process Engineering equips its undergraduates with a broad range of knowledge, which allow them to successfully transition into a career path they desire, such as industry or academia or entrepreneurship. Also, our department is blessed with a highly qualified and experienced academic staff who has the potential to bring the best out of students, in both academic and professional aspects. Developing a versatile skillset including technical, critical thinking, communication, and leadership skills to go along with that knowledge would enable DCPE graduates to excel in whatever career they choose.

Uditha

(2009 Batch)

Pickering

Canada

Nuclear Operator-

Generating Station,

The Chemical and Process Engineering curriculum provided me with a thorough understanding of the Process Engineering industry. The vast knowledge acquired through different modules in this amazing curriculum always helped me to cross the border between Process Engineering and Nuclear Engineering. It is not only the curriculum that made me confident but the dedicated staff at the Department of Chemical and Process Engineering who made us logical thinkers and helped to develop our confidence to apply the knowledge in different applications.

Not like other Engineering disciplines, Chemical and Process Engineering never frame the graduates to a certain number of options, and it is not an exaggeration to say you have limitless options. The knowledge and experience gained through the program are almost applicable in any industry in the world. It provides a strong base to build one's career in their respective field of expertise

> Rushanth **Chandrabose** (2009 Batch) Director Technical – **Industrial Solutions** Lanka (pvt) Ltd

My Childhood dream to become a desalination expert to solve water crisis in Sri Lanka. So, I have selected Chemical and Process engineering to establish my career in water sector, after completing my degree in 2015, I have joined with Industrial solutions Lanka (pvt) ltd. Joining with new startup has helped me to explore more challenges and it has helped me to learn lot.

The Knowledge I have gained in Process Engineering has helped me to develop wellrefined solution to my end client. I have developed system for Sri Lanka's Leading

Milk Processing Industries, Apparel Industries, Pharmaceutical Industries, Rice Mill Industries, Electro-plating industries, Rubber Industry, Coconut based industry, Dye Processing Industry, Leather and Tanning Industry and Ink based industry etc. After Completing Training program on Designing of Advanced Water Treatment plant using Membrane Technologies at IHE Delft, I have designed and developed Sri Lanka's First Zero Liquid Discharge Facility for pharmaceutical Industry.

Fundamental given by CPE in Process engineering is key of my success, which has helped me to design and develop more 300 Industrial effluent Treatment Plants and where I treat minimum 5,000,000 m3 wastewater annually. I wish all CPE graduate to follow your passion it will leave you to your purpose.

Gayathri Liyanage (2008 batch)

Research Engineer – Industrial Technology Institute (ITI)

The chemical and process engineering of university of Moratuwa, program equipped me with knowledge and confidence to explore new horizons of academic and professional life. It is a very broad discipline which enables one to enter and sustain in numerous different fields. As for me, it opened doors for a career in product development in the apparel sector and then for an academic career with research opportunities in nanotechnology and sustainable energy generation. It also gave me the ability to work closely with international and government organizations related to environmental health and safety and sustainability, such as the Organization

for the Prohibition of Chemical Weapons (OPCW).

The friendly and supportive environment of the department helped me immensely to enhance my interpersonal, communication and team working skills which later became very beneficial for my professional career. Further the entrepreneurial and business knowledge transferred through the academic program prepared me to work and in a changing business environment. In conclusion, if someone is really into the big picture and willing to take up challenges in many different fields, this engineering branch is for you!

Amali Vithanage (2008 batch) Founder-Layashri Industries, Hokandara.

Chemical and process engineering is a vast subject among all the engineering disciplines in the world. It consists with various topics including unit operations, fluid dynamics, transport phenomena, polymers, environmental science, food and bio process etc. Acquiring knowledge about these subject areas would make us possible to showcase our abilities and talents in most of the available manufacturing fields in the industry. But somehow as we all know Sri Lanka is very much deviating from manufacturing and focusing on importing, which is a considerable threat to fresh chemical engineering graduates when it's come to job hunting. But still, it is somewhat manageable because of wide range of applications that we are thorough about during undergraduate period. However, it is a known fact that 'education is what is remaining inside you after you forget all academic stuff from your head' or in other words 'it's not about what you learn but it's all about the process of learning'. Ultimately 4 years of university period is transforming you in to a person that has the capacity of thinking new, accepting challenges and focus until you achieve targets.

In Sri Lankan context we chemical engineers have a big role to play to strengthen the manufacturing processes and do massive value addition with zero unused waste. Therefore, investing on a such production facility even in very small scale will energize Sri Lankan economy and also it will be a huge motivation to the next chemical engineering generation. As I mentioned earlier getting an employment of a company is not a massive challenge until now but there is a competition which is increasing day by day. Therefore, we as senior chemical engineers hold а responsibility on addressing that issue without getting used to the comfort zone of doing only a job.

As per my own experience female chemical engineers do have an extra difficulty in finding a job and also retaining on the job. The reason is not mainly the abilities or the performance of a lady engineer, but the narrow mindset of Sri Lankan society. As a result, female engineers might get highly demotivated in job culture. They start to feel less than a male engineer due to lack of empowerment and prohibiting of the opportunities to grow. Sometimes they get stuck with only documentation work which is even more depressing. So here I suggest it is always great to become an entrepreneur with engineering skills and knowledge rather than depending only on monthly pay cheque. Nevertheless, there is a huge risk factor accompanied when starting a business when it's come to return on investment (ROI) and payback time. Also selecting the type of business, funding, planning the

location and set up the facility, investing on energy supplies etc. are always the questions that should be answered. But engineers naturally have the ability to come up with solutions to problems also they are trained to make contacts in between fellow engineers. I can provide lots of examples for companies started from scratch with batch mate partnerships and still thriving in the industry. So, the gain of investing on such process is much more effective with time than just hanging on a job.

In conclusion, it can be said that chemical engineers do have a responsibility to initiate new manufacturing facilities or production processes to convert raw materials in to value added products, not just to support the Sri Lankan economy but to encourage fresh graduates blooming to world every year. Eventually we can retain good brains within the country and make Sri Lanka a wonderful place to live.

Chathuri Dayananda (2002 Batch) Alfa Laval Technologies AB, Sweden

Being admitted to the DCPE at UoM was a turning point in my life. It helped me to develop myself as a well-rounded professional. The program is unique, and it empowers graduates to venture into diverse career paths.

Among many other skills, I honed the skill to think critically during the program. This helped me a lot to thrive my first career in the IT industry for seven years. After, I've got selected for a competitive engineering M.Sc. program in Europe. I am confident that the CPE program and the grades on my resume carried a lot of weight to help me in the selection process. Currently, I am employed in an innovative company that invented the first dairy centrifugal separator. The vast experience and exposure I'm gaining there in different roles is a dream come true.

CPE graduates are well equipped to take on any challenge anywhere in the world. And the world is full of opportunities. It's up to us to seize them and discover new dimensions in our professional lives.

Bandara Dissanayake (2001/02 batch) Principal Scientist at Procter & Gamble, USA

Accomplishing my childhood dream, I graduated from DCPE in 2005 as a Chemical Engineer. The depth and breadth of the curriculum helped me develop numerous skills and technical curiosity to explore untapped territories in Science and Technology. After gaining industrial and academic exposure, I moved to UK for my PhD in Chemical Engineering. After my post-doc, I joined P&G in Japan where I had the opportunity to apply all my expertise in unit operations and transport phenomena in developing manufacturing processes for cosmetics. After spending nearly a decade in Chemical Engineering as a student, Engineer and Scientist, I decided to learn something different.

I am now working as a lead Skin Scientist, leveraging image analytics and data science in redefining skin biology to develop new skin care solutions. My passion has always been to learn and master - which led me to embark on an exciting career journey - at least- so far.

World is changing faster than ever so are the skills for future. My advice is to learn and

excel in digital skills such as modelling and simulation, data science, coding to develop creative solutions to complex problems in the digital era. 'Follow your passion, embrace changes and never stop learnings'

Deshai Botheju 1997/98 Batch Project Discipline Lead (HSE Management and Design), Wood Group

Inspired by my beloved father who was "a backyard inventor" of his own style, I got my first footholds in technology right at the start. I was then able to spearhead my career through obtaining the bachelor's degree in Chemical and Process Engineering (CPE), while being awarded as the Best CPE Graduand (2002) at University of Moratuwa. After completing two master's degrees as well, I obtained my doctoral degree from the Norwegian University of Science and Technology (NTNU).

After working as a Postdoctoral Researcher and as an Assistant Professor for several years at USN, I moved into the Oil & Gas industry by joining Agility Group Norway in 2012 and then continued to stay in the industry as a Senior Engineering Consultant and as a Discipline Lead within the arena of Process Safety Design, Technical Safety, and Environmental Management.

I found CPE as an inspiring field that not only aided my own professional career but also empowered me to serve the society in a broader manner via knowledge dissemination and advocating scientific methodology. I highly encourage all CPE graduates to bestow part of your professional life to serve the society as thought-leaders and influencers as you are well qualified for that role.

THE JOURNEY OF DCPE

The Department of Chemical Engineering, being established by gazette notification on 15th February 1972 at Katubedda Campus of University of Ceylon, had its roots in the Junior Technical Officer's course conducted by the Maradana Technical College. Initially the degree program was termed as Chemical Engineering and Fuel Science, offering the undergraduates with the degree of Bachelor of Applied Science (BASc.), which altered into Bachelor of Science of Engineering in 1980.

Being initiated with only 8 students per batch, the Department of Chemical and Process Engineering has been progressed to offer the students with the undergraduate degree program in Chemical and Process Engineering for 80 students per batch of each intake to the University of Moratuwa.

Currently, the undergraduate course curriculum has expanded with several minor specialization fields for Environmental Engineering, Energy Engineering, Food and Bioengineering, Polymer Engineering and Petroleum Engineering in order to equip the students with necessary knowledge required for a prospective professional to understand and appreciate the role of a Chemical and Process Engineer in an economy for the sustainable growth.

The continuous growth of well-qualified human resource factor, well-structured course curriculum, well-equipped and wellfunctioning laboratory facilities, and other supporting resources ensures the improving standard of the internationally recognized programs delivering best professionals.

The DCPE is also improving the bond with the industry during its journey. The internships offered for the undergraduates, the huge career opportunities available for the fresh graduates, the abundance of resource persons for mentoring programs, the facilitators for field visits, the established incubators at the department by the pillars in the industry, and the huge amount of consultancy services required from the department stand as proof for the success of the DCPE.

	• Establishment of the Department of Chemical Engineering at the Katubedda
	Campus of University of Ceylon.
1972	 Inauguration of the Department of Chemical Engineering under the Applied
	Science Faculty offering the Degree of Bachelor of Applied Science (B.A.Sc.)
	8 students per batch only were offered with the Degree.
1976	 Graduation of the 1st batch of students from the department.
	 Introduction of the Bachelor of Science of Engineering (B.Sc. Eng.) Degree.
1001	• The students under E II category were given the opportunity to select Chemical,
1901	Material or Mining Engineering fields depending on their 1 st year performance in
	which common subjects were offered to all engineering disciplines.
1986	 Introduction of M.Sc. course in Polymer Technology as a full-time course.

STUDENT HANDBOOK 2021 INTAKE

1990	 Introduction of Polymer Engineering subject to the Chemical Engineering
1,,,,,	undergraduate curriculum for Final Part III.
	Increment of the student intake up to 15 students per batch.
1991	 Introduction of the subject 'Unit Operation' to the Part I Chemical Engineering
	Curriculum.
1992	 Inauguration of Chemical Engineering Society.
	• Conducting the three-day open day program "Making the future happen" at
1003	department premises and the first issue of 'Chemunique' magazine.
1775	• Conversion of the fulltime M.Sc. Course in Polymer Technology to a part time
	course.
	 Introduction of the optional subjects Environmental Engineering, Biochemical
100/	Engineering and Food Process Engineering to the Chemical Engineering
1774	curriculum.
	 Increment of the student intake up to 20 students per batch.
1008	• Alteration of the title of the Chemical Engineering Department to Department of
1770	Chemical and Process Engineering.
1999	 Increment of the student intake up to 30 students per batch.
	 Initiation of student intake under a common 'Engineering' category eliminating
	the E II stream.
	• Conversion of the course curriculum to semester system from session
	examinations systems.
2000	• Offering of specialization in the field of Chemical and Process Engineering for
2000	chosen undergraduates by their Level I academic performance.
	 Introduction of four fields of minor specialization (presently known as 'focus
	areas') namely, Food & Biochemical Engineering, Environmental Engineering,
	Energy Engineering and Polymer Engineering.
	 Increment of the student intake up to 50 students per batch.
2001	 Initiation of master's program in Chemical and Process Engineering with a first
-001	batch of 09 students.
2004	 Inauguration of Chemical Engineering Student Society (ChESS).
	 Revision of the course curriculum.
	 Re-establishment of the Prof. Hubert Silva Memorial Resource Centre
2005	 Received the IRQUE fund.
2000	• Agreement with Hayleys Group to sponsor the annual gold medal for the best
	Chemical and Process Engineering Student.
2006	 Foundation stone was laid for the new Chemical Engineering Centre.
	 Obtaining new equipment under IRQUE grants.
	 Initiation of the M.Sc. program in Sustainable Process Development as a part-time
	course with the first batch of 12 students in collaboration with Telemark
2007	University College, Norway.
	 Initiation of the offering of M.Sc. scholarships for Chemical and Process
	Engineering students in Norway.

STUDENT HANDBOOK 2021 INTAKE

	 Graduation of first Ph.D. holder.
	 Signing of agreements with NCPC and Cargills.
	 Declaring the Opening of Chemical and Process Engineering Centre.
2008	Inauguration of scholarships Program in Chemical and Process Engineering for
	students who have economic difficulties.
2000	 Establishment of first food and process development incubator in Sri Lanka.
2009	 Establishment of a partnership with Polipto Company – petrol from waste plastics.
	Increment of the student intake further up to 80 students per batch.
	• Chosen undergraduates were offered with field specialization in Chemical and
	Process Engineering from Semester II onwards.
2010	 Combination of minor specializations of Energy Engineering and Environmental
	Engineering reducing the minor specializations down to three.
	 Received accreditation by the IChemE for the undergraduate degree program.
	 Received accreditation by the IESL for the undergraduate degree program.
2011	 Establishment of SIL-UOM rubber products and process development incubator
2011	at the department.
2014	Initial student credit transfer program with 5 undergraduate students from
2014	Telemark University College, Norway.
2017	 Introduction of Petroleum Engineering focus area.
	Signed an MoU with East China University of Science and Technology to boost
2018	the academic collaborations between two institutions.
2010	Signed an agreement for Europe Sri Lanka capacity building in energy circular
	economy "EUSL Energy" online digital joint master's degree program.
	 Conversion of the existing M.Sc. course in Sustainable Process Development into
	M.Sc. course in Sustainable Process Engineering with a major curriculum revision
2010	by adopting the latest subject areas related to sustainable process industries.
2019	 Signed an agreement for a joint study program and student-staff exchange program
	with Sirindhorn International Institute of Technology, Thammasat University
	 Initiation Research for Undergraduates (R4U) club of CPE
2020	 Establishment of 24/7 laboratory.

ACADEMIC STAFF MEMBERS

The well-qualified and dynamic group of academic staff of the department is the foremost treasure of the department who professionals builds the from the undergraduate's ready for challenges beyond university life. They provide the students with theoretical, technological and industrial strengths supporting the students' outlook towards industry. The academic staff members of the DCPE always strive to develop the department as a place of excellence for the students.

Having a high recognition among the academic community for their contributions towards the betterment of the field, as educators of the chemical and process engineering discipline, the staff members are easily approachable and are ever willing to address student issues, whatever they may be.

HEAD OF THE DEPARTMENT

Prof. (Mrs.) Shantha Egodage B.Sc. Eng. (Moratuwa), M.Sc. (Moratuwa), M.Phil. (Moratuwa), Ph.D. (Loughborough), MIE (SL), C.Eng E -mail: head-cpe@uom.lk , segodage@uom.lk S Phone: +94 112 640 051 Ext: 4101/4120 Direct: +94 112 640 051

EMERITUS PROFESSOR

Eng. Prof. Anul Perera

DSc (RU-USA), B.Sc.(Eng), IntPE (SL), PEng (SL), C. Eng, FIE (SL), MIAChE (USA) E -mail: <u>anul@uom.lk</u>

SENIOR PROFESSORS

Snr. Prof. Ajith De Alwis

B.Sc. Eng. (Moratuwa), Ph.D. (Cambridge), MBA (PIM-USJP), MAIChe (USA), AMIChemE (UK), AMIESL, FNASSL E -mail: <u>ajith@uom.lk</u> Solution: <u>ajith@uom.lk</u> Phone: +94 112 640 051 Ext: 4118

Snr. Prof. (Mrs.) Padma Amarasinghe

B.Sc. Eng.(Moratuwa), M.Sc, Ph.D. (UMIST UK), MIE (SL), C. Eng E -mail: <u>padma@uom.lk</u> S Phone: +94 112 640 051 Ext :4116

PROFESSORS

Prof. Jagath Premachandra B. Sc. (Col.), M.Sc. (Sri J'Pura), Ph.D. (Cincinnati, USA) E -mail: jagath@uom.lk S Phone: +94 112 640 051 Ext :4102

Prof. Shantha Amarasinghe B.Sc. Eng. (Moratuwa), Ph.D. (Cambridge), MIE (SL), C. Eng E -mail: adusa2@uom.lk

Prof. P. G. Ratnasiri B.Sc.Eng. (Moratuwa), M.Sc. (UMIST), Ph.D. (NTNU) Norway E- mail: ratnasiri@uom.lk

Phone: +94 112 640 051 Ext: 4121

Prof. Mahinsasa Narayana B.Sc. (Eng), MPhil. (Eng.), Ph.D.(UK), MIE (SL), C.Eng E-mail: mahinsasa@uom.lk S Phone: +94 112 640 051 Ext: 4107

Prof. Shantha Walpalage B.Sc. Eng. (Moratuwa), Ph.D. (UK), MIE (SL), C. Eng E -mail: <u>shanthaw@uom.lk</u> S Phone: +94 112 640 051 Ext: 4105

Prof. (Mrs.) Sanja Gunawardena B.Sc. Eng. (Moratuwa), Ph.D. (Birmingham), MIE (SL), C. Eng E -mail: sanjag@uom.lk S fin Phone: +94 112 640 051 Ext: 4106

Prof. (Ms) Manisha Gunasekera B.Sc. Eng. (Moratuwa), M.Eng. (Moratuwa), Ph.D. (Loughborough), MIE (SL), C. Eng E -mail: <u>manisha@uom.lk</u> S Phone: +94 112 640 051 Ext: 4109

SENIOR LECTURERS

Dr. (Mrs.) Thilini U. Ariyadasa

B.Sc. (Hons) (University of Delhi), M.Sc. (Peradeniya), Ph.D. (ICGEB – New Delhi Component) Senior Lecturer Grade II E-mail: <u>thilini@uom.lk</u> Solution Phone: +94 112 640 051 Ext: 4619

Dr. (Mrs.) Duleeka Gunarathne B.Sc. Eng. (Moratuwa), MSc., Ph.D.(KTH Sweden), AMIESL Senior Lecturer Grade II E-mail: <u>duleekas@uom.lk</u> S Phone: +94 112 640 051 Ext: 4619

Dr. Thushara Subasinghe B.Sc Eng. Hons (UoM, Sri Lanka), M.Sc (ZJU, China), Ph.D (ZJU, China), AMIESL Senior Lecturer Grade II Email: thusharas@uom.lk Phone:+94 112 640 051 Ext: 4119

Dr. Mahinsasa Rathnayake

B.Sc. Eng. (Ruhuna, Sri Lanka), M.Sc (Thammasat, Thailand), Ph.D (Thammasat, Thailand), AMIESL, AMECSL Senior Lecturer Grade II E-mail: <u>mratnayake@uom.lk</u>

Phone: +94 112 640 051 Ext: 4607

Dr. (Mrs.) Tharushi Keerthisinghe

B.Sc. Eng. (Moratuwa), Ph.D. (NTU, Singapore), AMIESL Senior Lecturer Grade II (on contract) E -mail: <u>tharushik@uom.lk</u>

LECTURER UN-CONFIRMED

Dr. (Mrs.) Dilhara Sethunga B.Sc. Eng. (Moratuwa), Ph.D. (NTU, Singapore), Lecturer (un-confirmed) E -mail: <u>dilharap@uom.lk</u>

LECTURERS

Mr. Poorna Vidanage B. Sc. Eng. (Moratuwa), AMIESL Lecturer (Probationary) E-mail: poornaw@uom.lk

Ms. Madhurika Geethani B. Sc. Eng. (Peradeniya), AMIESL Lecturer (Probationary) E-mail: <u>madhurikag@uom.lk</u>

Mrs. Udari Perera B. Sc. Eng. (Moratuwa), M.Sc by Research (Monash) Lecturer (On Contract) E -mail: <u>udarip@uom.lk</u>

Mr. Chamuditha Benaragama B. Sc. Eng. (Moratuwa) Lecturer (On Contract) E-mail: <u>cmbenaragama@uom.lk</u>

Mr. Pasindu Perera B. Sc. Eng. (Moratuwa) Lecturer (On Contract) E-mail: pasindudp@uom.lk

Ms. Waruni Ariyawansa B. Sc. Eng. (Moratuwa), AMIESL Lecturer (On Contract) E-mail: <u>warunim@uom</u>

Ms. Indu Lakmi B. Sc. Eng. (Moratuwa) Lecturer (On Contract) E-mail: <u>lakmii@uom.lk</u>

ACADEMIC SUPPORT STAFF

Mr. Chinthaka Narangoda B. Sc. (Kelaniya), P. G. Dip. in IT (Moratuwa) System Analyst Grade II Ext: 4618

Mrs. Dinusha Martino B. Sc. (NS) (OUSL), M. Sc. (Thailand) Analytical Chemist Ext: 4613

STUDENT HANDBOOK 2021 INTAKE

TECHNICAL STAFF

Mrs. H. B. R. Sajeewani Staff Technical Officer – Grade I Ext: 4645
Mrs. Indika Athukorala Staff Technical Officer – Grade I Ext: 4160/4625
Mr. B. H. P. Mahendra Staff Technical Officer – Grade I Ext: 4614
Ms. Ishara Gayani NDT (Moratuwa) Technical Officer Grade II seg A Ext: 4150
Mrs. Shameera De Silva Technical Officer Grade II seg A Ext: 4644
Ms. Dineshi Rodrigo Technical Officer Grade II seg A Ext: 4617
Mr. Dinuka Wijegunarathne

	Ms. Harshani Hettiarachchi NDT (Moratuwa) Technical Officer Grade II seg A Ext: 4100
	Mrs. Hasini Gunarathna NDT (Moratuwa) Technical Officer Grade II seg A Ext: 4100
TECHNICAL ASS	ISTANCE STAFF
	Mr. B. A. R. D. Abeywardena Boiler Operator Grade I Ext: 4620
	Mr. Asanka Kumara Lab Attendant (H.G.) Ext: 4626/4150
	Mr. S. M. R. N. Dhammika Lab Attendant (L.G.) Ext: 4606
	Mr. D. S. Dayananda Lab Attendant (L.G.) Ext: 4156
	Mr. B. Karunathilaka Lab Attendant (L.G.) Ext: 4625

STUDENT HANDBOOK 2021 INTAKE

Mr. Gihan Peiris Lab Attendant (L.G.) Ext: 4160

Mr. Viraj Somarathna Lab Attendant (L.G.) Ext: 4614

Mr. Nuwan Gunasekara Lab Attendant (L.G.) Ext: 4160

OFFICE ASSISTANCE STAFF

Ms. Dilrukshi Ranasinghe Clerk Grade II Ext: 4100

Mrs. Thushari Gunawardana Staff Management Assistant Ext: 4100

Mr. Madushan Wijayarathna Office Assistant Ext: 4100

UNDERGRADUATE DEGREE PROGRAM

Graduate Program Outcomes (POs) Profile

- **1. Engineering Knowledge:** Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to solve complex engineering problems.
- 2. **Problem Analysis:** Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- **3. Design/ development of solutions:** Design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
- **4. Investigation:** Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.
- **5. Modern Tool Usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, to complex engineering activities, with an understanding of the limitations.
- 6. The Engineer and Society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
- 7. Environment and Sustainability: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate knowledge of and need for sustainable development.
- **8.** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- **9. Individual and Teamwork:** Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
- **10. Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **11. Project Management and Finance:** Demonstrate knowledge and understanding of engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Lifelong learning:** Recognize the need for and have the preparation and ability to engage in independent and lifelong learning in the broad context of technological change.

Program Educational Objectives

- 1. To produce graduates who pursue challenging careers, with skills to analyze and provide solutions in energy, environmental, food and bio, polymer and other related industries and emerging areas with an appreciation of the role of Chemical Engineering in the society.
- 2. To produce graduates who pursue advanced studies in Chemical Engineering and related disciplines.
- 3. To create engineering leaders with a global focus, displaying entrepreneurship skills.

Students are selected to follow the B.Sc. in Chemical and Process Engineering (CPE) course based on their performance in semester I examination and their individual preferences. Until 2009, student intake was restricted to 50, which has been increased to 80 in 2010. This was further expanded to 90 in 2013. Currently, the DCPE offers five focus areas after completion of their sixth semester, namely;

- Environmental Engineering
- Food and Bioengineering
- Polymer Engineering
- Petroleum Engineering
- Energy Engineering

Students have the option of following the Chemical and Process Engineering degree program by selecting subjects without any focus area/minor specialization.

The Department degree program is regularly being revised and renovated under a collaborative effort by the academic and industrial personnel with the objective of creating highly skilled graduates who meet the needs and demands in both the industry and the academia. Students have the liberty of approaching the department professionals at any time to acquire necessary knowledge and skills during their stay in the department.

Graduation Credit Requirement

Semester	GPA Credits Normal	Non-GPA Credits
Semester 1	15	-
Semester 2	20	-
Semester 3	20	-
Semester 4	22	-
Semester 5	23	-
Industrial Training	-	6
Semester 6	9	
Semester 7	13	-
Semester 8	10	-
Total	132	6

Total credit requirement for the Specialization

Total credit requirement for the Graduation

Total credit requirement for the Specialization	138
Faculty/Specialization Electives beyond the specialization requirements [refer faculty electives tables (Page 41-46)]*	12
TOTAL CREDIT REQUIREMENT FOR GRADUATION	150

Faculty Academic Committee Coordinator

Dr. (Mrs) Duleeka Gunarathne Email – eac-ch@uom.lk

Semester Coordinators

Academic level	Coordinator	Email address
Semester 1	Dr. (Mrs.) Thilini Ariyadasa	thilini@uom.lk
Semester 2	Mr. Poorna Vidanage	poornaw@uom.lk
Semester 3	Dr. (Ms.) Manisha Gunasekera	manisha@uom.lk
Semester 4	Ms. Madhurika Geethani	madhurikag@uom.lk
Semester 5	Dr. (Mrs.) Duleeka Gunarathne	duleekas@uom.lk
Industrial Training	Dr. Mahinsasa Rathnayake	mratnayake@uom.lk
Semester 6	Dr. (Mrs.) Tharushi Keerthisinghe	tharushik@uom.lk
Semester 7	Dr. Thushara Subasinghe	thusharas@uom.lk
Semester 8	Prof. Mahinsasa Narayana	mahinsasa@uom.lk

Teaching and Learning

The knowledge is transferred to the students through a range of learning and teaching activities to fulfil the course objectives. Clearly defined assessment methods are used to measure student's success in meeting course objectives. Module outline consisting subject coordinator, lecturers, pre-requisites, course objective, learning outcome, tentative course outline. method of grading. recommended textbooks selected and references for each module is distributed to students at the first lecture of the module.

With the recently established outcome-based education system (OBE), traditional lecturebased teaching and learning system have been diverted to a more student-centred system. Modules are taught through a combination of lectures, practical classes, tutorials, discussions, question and answer quizzes and sessions, take-home assignments. These methods are clearly defined for each module with the learning outcomes of the individual subjects and have been modified such that the student is in an active learning process with more classroom interactions. Subject-specific theories, fundamentals and concepts are delivered through lectures, aided by one or combination of: black/white board. overhead projector, multimedia, printed lecture notes and many other learning activities. Students learn by listening, seeing, taking down notes and by discussion. Lecture notes and additional resources are uploaded in Learning Management System (LMS), which is the latest IT based learning environment in University of Moratuwa. Students can access LMS through the following web address.

Assess to LMS URL: https://lms.uom.lk

Practical classes are carried out in groups, 2-5 students per group, under the guidance of a lecturer and/or an instructor to develop data recording, calculation, analysis and interpretation skills. Tutorials encourage student-centred learning towards the application of theories to solve chemical engineering problems. Model answers for the tutorials are provided for self-learning.

Assignments, case studies and literature surveys develop a range of skills such as information gathering, identifying lessons and time management. Group or individual activities are introduced to enhance the student interaction with the classroom while maintaining a lively learning process. Group or individual presentations at the end of selected assignments are a means of developing presentation skills from the lecturer's and the colleagues' feedback.

Industrial visits are arranged to enunciate the practical applications of theories that are taught during the degree program.

Six months industrial training period at the end Semester 5 enables students to experience in-plant work in an area of their preference within the CPE program. The students develop management skills in addition to the chemical engineering disciplines. Continuous assessment of the training progress is done under the guidance of the Director of the Department of Industrial Training. A student guide for training and training report preparation is

STUDENT HANDBOOK 2021 INTAKE

available for the student. An E-portal containing information for students which can be accessed through Departmental intranet is in operation. This facility is expected to enhance student's self-learning abilities.

Research is also an integral component of the pathway of becoming a chemical and process engineer. In the semester 6, students will be divided into groups of 2 or 3 and they will work on the undergraduate research project with an academic staff member as a supervisor. The students will have the invaluable opportunity to increase their research output by publishing their findings in well-reputed journals and research conferences.

The engineering product design experience is a vital element in engineering education. Students are encouraged to develop a prototype of the designed product. enhancing group learning and innovation. The final year design project allows students to apply their gathered knowledge during the first three years in the university to conceptually design a process plant. The final year comprehensive design project consists of a common component where a group of students works on the literature survey, process development and the material and energy balance of an industrial scale plant and an individual component where each student does the detailed design of a major unit in the process.

Examination and Assessment Strategy:

The performance of each student is evaluated solely by either continuous assessments (CA) or a combination of continuous assessments and end of semester examinations (WE).

Continuous Assessments Includes:

- Course work
- Assignments
- Quizzes
- Viva
- Mid-Semester exams
- Presentations and
- Reports.

All candidates should obtain at least 35% from each of CA and WE components to pass a module. This is a university requirement applicable to all modules. The completed assignments must be submitted to the lecturer on the dates of submission as detailed in the assignments. Late submissions will be compensated with a reduction of marks.

Students having prolonged illnesses may provide medical reports through the Medical Officer of the university or an equally qualified doctor. Arrangements can be made through negotiation with the lecturer in person to submit assignments. Students having disabilities are encouraged to discuss with the semester coordinates and subject coordinators to make necessary arrangements.

Industrial Training is coordinated and assessed jointly by the DCPE, Industrial training division of UOM and NAITA. The students are partly assessed while undergoing training and any improvement needed to obtain better training is encouraged at this instance. The student is assessed based on the report submitted at the end, the diary maintained during the training period and a viva assessment.

The final year Comprehensive Design Projects and Research Projects are assessed by the interim reports, final report, presentations, and viva voce examinations. The marks are displayed on the notice board/LMS and the students are given a chance to apply for re-correction. The recorrection application is also allowed for continuous assessment results displayed on the notice board/LMS before the end of the semester.

Depending on the credits earned by the student for each module, an Overall Grade Point Average (GPA) is calculated. Each student is awarded a class at the completion of all the graduation requirements within five academic years.

A documentation manual consists of curriculum and syllabi, assessment methods and other relevant information on undergraduate program is available in the department.

Curriculum

The following description is followed.

C - Core Modules

E - Elective Modules

Semester 1		S	Specialization requirement					15.0		
			Hours/Week		Credits		Norm		Evaluation	
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	GPA	NGPA	CA%	WE%
CE1023	Fluid Mechanics	С	2	2/4	2.0				20	80
CS1033	Programming Fundamentals	С	2	2	2.0				20	80
EE1040	Electrical Fundamentals	С	2	2/4	3.0				20	80
MA1014	Mathematics	С	5/2	1	3.0		15.0		20	80
ME1033	Mechanics	С	2	2/4	2.0		-		20	80
MT1023	Properties of Materials	С	2	2/4	2.0				20	80
EL1030	Language Skills Enhancement [S1 & S2]	С	0	2	1.0				100	0
г		Cotal for semester 115.00.0					15.0	0.0		
Semester 2		Specialization requirement				ent	20.0			
CH1051	Engineering Thermodynamics	С	2	2	3.0				40	60
CH1044	Fluid Dynamics	С	3	2	4.0		18.0		40	60
CH1071	Chemistry and Green Chemistry for Process Engineers	С	2	2	3.0				40	60
CH1061	Chemical and Bioprocess Engineering Principles	С	3	2	4.0				40	60
MA1024	Methods of Mathematics	С	5/2	1	3.0				30	70
EL1030	Language Skills Enhancement [S1 & S2]	С	0	2	1.0				100	0
HM-1	Humanities I	E	2	0	2.0		2.0		100	0
]	fotal f	for seme	ester 2	20.0	0.0	20.0	0		

STUDENT HANDBOOK

2021 INTAKE

Semester 3		S	Specialization requirement					20.0		
			Hours/Week		Credits		Norm		Evaluation	
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	GPA	NGPA	CA%	WE%
CH2631	Chemical Thermodynamics	С	2	2	3.0		20.0		40	60
CH2015	Heat and Mass Transfer	С	3	2	4.0				40	60
CH2160	Bioprocess Engineering and Practices	С	2	2	3.0				40	60
CH2170	Laboratory Practices I	С	0	6	3.0				100	0
MA2014	Differential Equations	С	2	0	2.0				30	70
MA2034	Linear Algebra	С	2	0	2.0				30	70
EN1803	Basic Electronics for Engineering Applications	С	2	2	3.0				30	70
]	Fotal f	otal for semester 3			0.0	20.0	0.0		
Semester 4		Specialization re			equirem	ent	22.0			
CH2151	Particulate Systems	С	3	2	4.0				40	60
CH2180	Separation Processes	С	3	4	5.0		20.0		40	60
CH4501	Chemical Kinetics and Reactor Design	С	3	2	4.0				40	60
CH2210	Materials for Engineering Applications	С	2	2	3.0				30	70
CH2270	Laboratory Practices II	С	0	4	2.0				100	0
MA3024	Numerical Methods	С	2	0	2.0				30	70
HM-2	Humanities II	Е	2	0	2.0		2.0		100	0
Total for semester 4					22.0	0.0	22.0	0		

STUDENT HANDBOOK

2021 INTAKE

Semester 5		Sp	Specialization requirement					23.0		
			Hours/Week		Credits		Norm		Evaluation	
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	GPA	NGPA	CA %	WE%
CH4045	Process Dynamics and Control	С	2	2	3.0				40	60
CH3045	Plant Safety, Health and Environment	С	7/2	1	4.0				30	70
CH3034	Process Equipment Design	С	3	2	4.0				40	60
CH3055	Energy Systems Engineering	С	2	2	3.0		21		40	60
CH3150	Chemical Process Synthesis and Integration	С	2	2	3.0				40	60
CH3880	Engineer and Society [S5 & S6	С	0	2	1.0				100	0
MN3043	Business Economics and Financial Accounting	С	3	0	3.0				30	70
MA3014	Applied Statistics	Е	2	0	2.0				30	70
MA2024	Calculus	Е	2	0	2.0		2		30	70
MA3030	Operational Research	Е	2	0	2.0				30	70
Το			r semest	ter 5	27.0	0.0	23.0	0.0		
Industrial Training		Sp	oecializa	tion 1	equirement		6.0			
CH3994	Industrial Training	С				6.0		6.0	100	0
	dustrial Training				6.0	0.0	6.0			
Semester 6		Specialization			equire	nent	9.0			
EL3820	Technical Report Writing and Presentation Skills	С	1	4	3.0				100	0
CH4751	Research Project [S6, S7 & S8]	С	0	2	1.0		9.0		100	0
CH3170	Laboratory Practices III	С	0	6	3.0				100	0
CH3880	Engineer and Society [S5 & S6]	С	1	2	2.0				100	0
	tal fo	r semes	ter 6	9.0	0.0	9.0	0.0			
STUDENT HANDBOOK

2021 INTAKE

	Semester 7	S	pecializat	ion re	quirem	ent	13	5.0		
			Hours/V	Veek	Cre	dits	No	rm	Evalu	ation
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	GPA	NGPA	CA%	WE%
CH4016	Comprehensive Design Project I	С	0	8	4.0				100	0
CH4751	Research Project [S6, S7 & S8]	С	0	2	1.0		7.0		100	0
MN4023	Engineering Economics	С	2	0	2.0				30	70
CH4120	Biofuels and Biorefineries	Е	2	2	3.0				40	60
CH4130	Process Optimization	Е	2	2	3.0				40	60
CH4140	Biotechnology	Е	2	2	3.0		3.0		40	60
CH4160	Process Chemicals Management	Е	2	2	3.0				40	60
CH4371	Petroleum Trade and Economics	Е	2	2	3.0				30	70
CH4410	Polymeric Materials	Е	2	2	3.0				30	70
CH4026	Process Modelling and Simulation	Е	2	2	3.0				40	60
CH4420	Waste Minimization and Resources Recovery	Е	2	2	3.0		3.0		30	70
CH4430	Industrial Chemical Manufacturing Processes	Е	2	2	3.0				40	60
CH4235	Polymer Processing Operations	Е	2	2	3.0				30	70
CH3720	Waste to Energy	Е	2	2	3.0				40	60
CH3253	Environmental Bioengineering	Е	2	2	3.0				30	70
CH4440	Petrochemical Process Operations	Е	2	2	3.0				30	70
CH4285	Food Safety and Hygienic Plant Design	Е	2	2	3.0				40	60
	Total for semester 7						13.0	0.0		

STUDENT HANDBOOK

2021 INTAKE

5	Semester 8	Spe	Specialization requirement				10.	0	D		
			Ho /W	urs eek	Cred	lits	Nor	m	Evalua	ation	
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	GPA	NGPA	CA%	WE%	
CH4035	Comprehensive Design Project II	С	0	10	5.0				100	0	
CH4751	Research Project [S6, S7 & S8]	С	0	2	1.0				100	0	
MN4151	Project Management	С	2	0	2.0		10.0		30	70	
MN4113	Production and Operations Management	С	2	0	2.0				30	70	
CH4275	Polymer Products Manufacturing Technologies	Е	2	2	3.0				40	60	
CH4742	Polymer Products and Tool Design	Е	2	2	3.0				40	60	
CH4450	Energy Storage Systems	Е	2	2	3.0				40	60	
CH4255	Renewable Energy	Е	2	2	3.0				40	60	
CH4651	Combustion Technology	Е	2	2	3.0				40	60	
CH4215	Environmental Engineering and Management	Е	2	2	3.0				30	70	
CH4460	Sustainable Process Technology	Е	2	2	3.0				30	70	
CH4351	Up-stream Oil and Gas Operations	Е	2	2	3.0				30	70	
CH4381	Petroleum Refining Operations	Е	2	2	3.0				30	70	
CH4294	Bioengineering	Е	2	2	3.0				40	60	
CH4691	Food Process Engineering	Е	2	2	3.0				40	60	
	Total for semester 8			ter 8	43.0	0.0	10.0	0.0			
		Gra	nd to	tal	205.0	6.0	132.0	6.0			

Focus Area

			Ho W	urs/ eek	Cre	dits	Evalu	ation		red
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%	Semester	Credits requi
Focus area-Polymer Engineering										
CH4410	Polymeric Materials	С	2	2	3		30	70	7	
CH4235	Polymer Processing Operations	С	2	2	3		30	70	7	
CH4275	Polymer Products Manufacturing Technologies	С	2	2	3		40	60	8	12
CH4742	Polymer Products and Tool Design	С	2	2	3		40	60	8	
Focus area	- Food and Bioengineering									
CH4140	Biotechnology	С	2	2	3		40	60	7	
CH4285	Food Safety and Hygienic Plant Design	С	2	2	3		40	60	7	12
CH4294	Bioengineering	С	2	2	3		40	60	8	
CH4691	Food Process Engineering	С	2	2	3		40	60	8	
Focus area - Environmental Engineering										
CH4420	Waste Minimization and Resources Recovery	С	2	2	3		30	70	7	
CH3253	Environmental Bioengineering	С	2	2	3		30	70	7	10
CH4215	Environmental Engineering and Management	С	2	2	3		30	70	8	12
CH4460	Sustainable Process Technology	С	2	2	3		30	70	8	
Focus area	- Petroleum Engineering									
CH4371	Petroleum Trade and Economics	С	2	2	3		30	70	7	
CH4440	Petrochemical Process Operations	С	2	2	3		30	70	7	12
CH4351	Up-stream Oil and Gas Operations	С	2	2	3		30	70	8	
CH4381	Petroleum Refining Operations	С	2	2	3		30	70	8	
Focus area	- Energy Engineering									
CH4120	Biofuels and Biorefineries	С	2	2	3		40	60	7	
CH3720	Waste to Energy	С	2	2	3		40	60	7	9
CH4450	Energy Storage Systems	С	2	2	3		40	60	7	
CH4255	Renewable Energy	Е	2	2	3		40	60	8	3
CH4651	Combustion Technology	Е	2	2	3		40	60	8	5

Minors

Students following the Chemical and Process Engineering program can obtain minors in by fulfilling following subject requirements.

			Hou We	rs/ ek	Cred	lits	Evalua	ation		red
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%	Semester	Credits requi
EL2410	Introduction to Literary Criticism	Е	3		3.0		100		3	3
EL2420	Introduction to Poetry and Drama	Е	3		3.0		100		4	
EL3410	Contemporary South Asian Writing	Е	3		3.0		100		5	0
EL4410	Literature and Translation	Е	3		3.0		100		7	9
EL4420	Science Fiction: Cyborgs and Dystopia	Е	3		3.0		100		8	
Total								12		

Minor in English Literature

Minor in English for Academic and Professional Purposes

			Hou Wee	rs/ ek	Cree	lits	Evalua	ation		red
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%	Semester	Credits requi
EL2510	Academic Writing for Engineering Studies	Е	3		3.0		100		3	
EL2520	Technical Report Writing for Engineering Studies	Е	3		3.0		100		4	
EL3510	Professional Communication for Engineering Contexts	Е	3		3.0		100		5	12
EL4510	Research Communication for Engineering Studies	Е	3		3.0		100		7	
EL4520	Journalism and Journalistic Writing	Е	3		3.0		100		8	
Total							12			

Minor in Mathematics

			Ho We	urs/ eek	Cred	lits	Eva	luation		red
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%	Semester	Credits requi
MA2014	Differential Equations	С	2		2.0		30	70	3	2
MA2024	Calculus	С	2		2.0		30	70	3,5	2
MA2034	Linear Algebra	С	2		2.0		30	70	3,4	2
MA3014	Applied Statistics	С	2		2.0		30	70	3,4,5	2
MA3024	Numerical Methods	С	2		2.0		30	70	3,4,5	2
Electives fo	r Statistics Minor									
MA4014	Linear Models and Multivariate Statistics	Е	3		3.0		30	70	7,8	
MA4090	Mathematical Statistics	Е	3		3.0		30	70	7,8	
MA4034	Time Series and Stochastic Process	Е	3		3.0		30	70	7,8	3
MA4000	Experimental Design and Quality Control	Е	3		3.0		30	70	7,8	
Electives fo	r Mathematics Minor									
MA4110	Finite Element Analysis	Е	3		3.0		30	70	7,8	
MA4120	Advanced Differential Equations	Е	3		3.0		30	70	7,8	
MA4130	Optimization	Е	3		3.0		30	70	7,8	
MA4144	Neural Networks and Fuzzy Logic	Е	3		3.0		30	70	7,8	
MA4150	Financial Mathematics	Е	3		3.0		30	70	7,8	
MA4160	Advanced Operational Research	Е	3		3.0		30	70	7,8	3
MA4210	Mathematical Analysis and Special Functions	Е	3		3.0		30	70	7,8	
MA4220	Topics in Algebra and Topology	Е	3		3.0		30	70	7,8	
MA4230	Number Theory and Cryptography	Е	3		3.0		30	70	7,8	
MA4240	Mathematical Methods in Theoretical Physics	Е	3		3.0		30	70	7,8	
Total									13	

Minor in Mathematics: A minor in mathematics is awarded if a student meets the following minimum requirements:

- MA2014, MA2024, MA2034, MA3014 and MA3024
- For the minor in Statistics (At least one module from MA40xx)
- For the minor in Mathematics (At least one module from MA41xx or MA42xx)

Minor in Entrepreneurship

			Hou We	rs/ ek	Cree	lits	Evalu	ation		red
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%	Semester	Credits requi
MN2020	Entrepreneurship Theory	С	3		3.0		50	50	2	3
MN3021	Entrepreneurship Business Basics	С	3		3.0		50	50	4	3
MN3011	Multidisciplinary Design, Innovation and Venture Creation	С	2		2.0		50	50	5	2
MN4011	Business Plan Development	С	2		2.0		40	60	8	2
MN3053	Industrial Management and Marketing	Е	3		3.0		30	70	5	
MN3043	Business Economics and Financial Accounting	Е	3		3.0		30	70	5	2
MN4023	Engineering Economics	Е	2		2.0		30	70	7	
MN4093	Management Skills Development	Е	2		2.0		30	70	8	
Total								12		

Minor in Patter	n Recognition
-----------------	---------------

			Ho We	urs/ eek	Crec	lits	Eval	uation		red
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%	Semester	Credits requi
EN3150	Pattern Recognition	С	2	2	3.0		70	30	5	
EN3330	Introduction to Engineering Optimization	С	2	2	3.0		70	30	6	6
EN4640	Statistical Signal Processing	Е	2	2	3.0		60	40	7	
EN4554	Deep Learning for Vision	Е	2	2	3.0		60	40	7	
EN4574	Advanced Pattern Recognition	Е	2	2	3.0		60	40	8	6
EN4730	Convex Engineering Design	Е	2	2	3.0		70	30	8	
EN4470	Probabilistic System Analysis	E	2	2	3.0		60	40	8	
Total								12		

Faculty Electives

Semester 2								
		Hours/	Week	Cred	lits	Evaluation		
Code	Module Name	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%	
CS2813	Visual Programming	1	2	2.0	-	40	60	
CS2843	Computer Systems	2	2	3.0	-	40	60	
EN1055	Introduction to Telecommunications	2		2.0	-	40	60	
EN1803	Basic Electronics for Engineering Applications	2	2	3.0	-	40	60	
ME1803	Introduction to Manufacturing Processes	2	2	3.0	-	40	60	
MN2020	Entrepreneurship Theory	3		3.0	-	50	50	

Semester 3							
		Hours/	Week	Cred	lits	Evalua	ation
Code	Module Name	Lecture	Lab/Tute	GPA	NGPA	CA %	WE%
CE2830	Road Safety and User Behaviour	2	2	3.0	-	50	50
CS2813	Visual Programming	1	2	2.0	-	60	40
ER2631	Elementary Gemmology	3/2	2/2	2.0	-	30	70
ER2210	Subsurface Ventilation	2	0	2.0	-	30	70
EE2804	Applied Electricity	2	2	3.0	-	40	60
EN1803	Basic Electronics for Engineering Applications	2	2	3.0	-	40	60
ME1803	Introduction to Manufacturing Processes	2	2	3.0	-	40	60
ME1823	Fundamentals of Engineering Thermodynamics and Applications	5/2	2/2	3.0	-	30	70
LT2030	Operations Engineering	4/2	4/2	3.0	-	40	60
LT2050	Principles of Supply Chain Engineering	4/2	4/2	3.0	-	40	60
MA2014	Differential Equations	2	-	2.0	-	30	70
MA2024	Calculus	2	-	2.0	-	30	70
MA2034	Linear Algebra	2	-	2.0	-	30	70
MA3014	Applied Statistics	2	-	2.0	-	30	70
MA3024	Numerical Methods	2	-	2.0	-	30	70
EL2410	Introduction to Literary Criticism	3	-	3.0	-	100	-
EL2510	Academic Writing for Engineering Studies	3	-	3.0	-	100	-

STUDENT HANDBOOK	2021 INTAKE
------------------	-------------

Semester 4									
		Hours/	Week	Credits		Evaluation			
Code	Module Name	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%		
BM2860	Biomedical Engineering and Applications	2	2	3.0	-	40	60		
CS2833	Modular Software Development	2	2	3.0	-	50	50		
CS2023	Data Structures and Algorithms	2	2	3.0	-	40	60		
CS3033	Computer Networks	2	2	3.0	-	40	60		
EN2853	Embedded Systems and Applications	2	2 2		-	60	40		
EN2860	Electronic Instrumentation and Signal Processing	2 2		3.0	-	40	60		
ME2851	Fundamentals of Machine Elements Design	2	2	3.0	-	30	70		
ME1823	Fundamentals of Engineering Thermodynamics and Applications	5/2	2/2	3.0	-	30	70		
LT2110	Transport Demand Modelling and Simulation	4/2	4/2	3.0	-	40	60		
MA2034	Linear Algebra	2	-	2.0	-	30	70		
MA2054	Graph Theory	2	-	2.0	-	30	70		
MA3014	Applied Statistics	2	-	2.0	-	30	70		
MA3024	Numerical Methods	2	-	2.0	-	30	70		
MN3021	Entrepreneurship Business Basics	3	-	3.0	-	50	50		
EL2420	Introduction to Poetry and Drama	3	-	3.0	-	100			
EL2520	Technical Report Writing for Engineering Studies	3	3 -		-	100			

STUDENT HANDBOOK	2021 INTAKE
------------------	-------------

Semester 5									
		Hours/	Week	Crec	lits	Evalua	ation		
Code	Module Name	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%		
CS3033	Computer Networks	2	2	3.0	-	40	60		
CS3413	Advanced Networking	2	2	3.0	-	40	60		
ER3420	Petroleum Engineering Upstream Processes	3	0	3.0	-	40	60		
EN3021	Digital Systems Design	2	2	3.0	-	50	50		
EN3150	Pattern Recognition	2 2		3.0	-	70	30		
EN3230	Wireless Networks	2 2		3.0	-	50	50		
EN3251	Internet of Things	2 2		3.0	-	100	0		
EN3563	Robotics	2	2	3.0	-	50	50		
TE3220	Analytics for Manufacturing and Servicing Businesses	5/2	2/2	3.0	-	70	30		
MA2024	Calculus	2	-	2.0	-	30	70		
MA3014	Applied Statistics	2	-	2.0	-	30	70		
MA3024	Numerical Methods	2	-	2.0	-	30	70		
MA3030	Operational Research	2	-	2.0	-	30	70		
MN3011	Multidisciplinary Design, Innovation and Venture Creation	2	-	2.0	-	50	50		
MN3053	Industrial Management and Marketing	3	-	3.0	-	30	70		
MN3043	Business Economics and Financial Accounting	3	-	3.0	-	30	70		
EL3410	Contemporary South Asian Writing	3	-	3.0	-	100	-		
EL3510	Professional Communication for Engineering Contexts	3	-	3.0	-	100	-		

Semester 6										
		Hours/	Week	Cred	lits	Evalua	ation			
Code	Module Name	Lecture	Lab/Tute	GPA	NGPA	%V	WE%			
EN3330	Introduction to Engineering Optimization	2	2	3.0		70	30			

STUDENT HANDBOOK

2021 INTAKE

Semester 7								
		Hours/	Week	Cree	lits	Evaluation		
Code	Module Name	Lecture	Lab/Tute	GPA	NGPA	CA%	WE%	
BM4152	Biosignal Processing	2	2	3.0		70	30	
BM4302	Medical Image Processing	2	2	3.0		70	30	
BM4322	Genomic Signal Processing	2	2	3.0		50	50	
CE4581	Intelligent Transportation Systems	2	1	3.0		40	60	
CE4611	Sustainable design and whole lifecycle	3	0	3.0		100	0	
CE4571	Operations Research for Infrastructure Systems	2	1	3.0		40	60	
CH4140	Biotechnology	2	2	3.0		40	60	
CH4235	Polymer Processing Operations	2	2	3.0		30	70	
CH3720	Waste to Energy	2	2	3.0		40	60	
CH4440	Petrochemical Process Operations	2	2	3.0		30	70	
CH3253	Environmental Bioengineering	2	2	3.0		30	70	
CS3121	Introduction to Data Science	2	2	3.0		40	60	
CS3203	Software Engineering Project	1	4	3.0		100		
CS3501	Data Science & Engineering Project	1	4	3.0		100		
ER4730	Sustainable Consumption of Earth Resources	2	2	3.0		60	40	
EE4715	Nuclear Power and Engineering Applications	2	2	3.0		40	60	
EN4470	Probabilistic System Analysis	2	2	3.0		60	40	
EN4554	Deep Learning for Vision	2	2	3.0		60	40	
EN4640	Statistical Signal Processing	2	2	3.0		60	40	
EN4594	Autonomous Systems	2	2	3.0		50	50	
MT4281	Surface Engineering and Tribiology	5/2	1	3.0		40	60	
MT4810	Continuum Scale Numerical Simulation of Material Systems	5/2	1	3.0		40	60	
TE4290	Production Planning & Control	5/2	2/2	3.0		40	60	
TE4230	Textile Composites	5/2	2/2	3.0		30	70	
LT4020	Project Management and Appraisal	4/2	4/2	3.0		40	60	
MA4014	Linear Models and Multivariate Statistics	3		3.0		30	70	
MA4090	Mathematical Statistics	3		3.0		30	70	
MA4034	Time Series and Stochastic Process	3		3.0		30	70	
MA4000	Experimental Design and Quality Control	3		3.0		30	70	

STUDENT HANDBOOK	2021 INTAKE
------------------	-------------

Semester 7 (continued)									
		Hours/V	Week	Credi	ts	Evalua	tion		
Code	Module Name	Lecture	Lab/Tute	GPA	NGPA	CA %	WE%		
MA4110	Finite Element Analysis	3		3.0		30	70		
MA4120	Advanced Differential Equations	3		3.0		30	70		
MA4130	Optimization	3		3.0		30	70		
MA4144	Neural Networks and Fuzzy Logic	3		3.0		30	70		
MA4150	Financial Mathematics	3		3.0		30	70		
MA4160	Advanced Operational Research	3		3.0		30	70		
MA4210	Mathematical Analysis and Special Functions	3		3.0		30	70		
MA4220	Topics in Algebra and Topology	3		3.0		30	70		
MA4230	Number Theory and Cryptography	3		3.0		30	70		
MA4240	Mathematical Methods in Theoretical Physics	3		3.0		30	70		
MN4023	Engineering Economics	2		2.0		30	70		
EL4410	Literature and Translation	3		3.0		100			
EL4510	Research Communication for Engineering Studies	3		3.0		100			

Semester 8							
		Hours/	Week	Cree	lits	Evalua	ation
Code	Module Name	Lecture	Lab/ Tute	GPA	NGPA	CA%	WE%
CE4621	Engineering Response to Climate Change	3	0	3.0		100	
CS3121	Introduction to Data Science	2	2	3.0		40	60
CS3203	Software Engineering Project	1	4	3.0		100	
CS3501	Data Science & Engineering Project	1	4	3.0		100	
ER4740	Remote Sensing and GIS for Engineers	2	2	3.0		30	70
EE3064	Energy Systems	2	2	3.0		40	60
EE4380	Reliability Evaluation of Engineering Systems	2	2	3.0		40	60
EE4410	Electrical Services for Buildings	2	2	3.0		40	60
EN4574	Advanced Pattern Recognition	2	2	3.0		60	40
EN4650	Computer Systems Architecture	2	2	3.0		70	30
EN4730	Convex Engineering Design	2	2	3.0		70	30
MT4420	Energy Materials	5/2	1	3.0		40	60
MT4774	Paint Technology	5/2	1	3.0		40	60
ME2860	Automotive Technology	5/2	2/2	3.0		40	60
TE4330	Smart and Functional Textiles	5/2	2/2	3.0		40	60
MA4014	Linear Models and Multivariate Statistics	3		3.0		30	70
MA4090	Mathematical Statistics	3		3.0		30	70
MA4034	Time Series and Stochastic Process	3		3.0		30	70
MA4000	Experimental Design and Quality Control	3		3.0		30	70
MA4110	Finite Element Analysis	3		3.0		30	70
MA4120	Advanced Differential Equations	3		3.0		30	70
MA4130	Optimization	3		3.0		30	70
MA4144	Neural Networks and Fuzzy Logic	3		3.0		30	70
MA4150	Financial Mathematics	3		3.0		30	70
MA4160	Advanced Operational Research	3		3.0		30	70
MA4210	Mathematical Analysis and Special Functions	3		3.0		30	70
MA4220	Topics in Algebra and Topology	3		3.0		30	70
MA4230	Number Theory and Cryptography	3		3.0		30	70
MA4240	Mathematical Methods in Theoretical Physics	3		3.0		30	70
MN4011	Business Plan Development	2		2.0		40	60
MN4093	Management Skills Development	2		2.0		30	70
EL4420	Science Fiction: Cyborgs and Dystopia	3		3.0		100	
EL4520	Journalism and Journalistic Writing	3		3.0		100	

Humanities Subjects

Semester 2										
			Ho W	urs/ eek	Cre	dits	Nor	m	Evalı n	uatio
Code	Module Name	Category	Lecture	Lab/Tute	GPA	VdDN	GPA	NGPA	%VO	WE%
HM2480	History and Development of Engineering	Е	2		2.0				100	
HM2450	Introduction to Psychology	Е	2		2.0				100	
HM2510	Sri Lankan Built Heritage	Е	2		2.0				100	
HM2610	Nutrition and Health	Е	2		2.0				100	
HM2620	Food and Nutrition	Е	2		2.0				100	
HM2630	Photography	Е	2		2.0				100	
HM2640	Photography as an Art	Е		4	2.0				100	
HM2710	Astronomy and Cosmology	Е	2		2.0				100	
HM2430	Human Rights	Е	2		2.0				100	
HM2410	Responsible Citizenship	Е	2		2.0				100	
HM2330	Yoga Practice	Е		4	2.0				100	
HM2010	Sinhala as a Second Language	Е	2		2.0				100	
HM2020	Tamil as a Second Language	Е	2		2.0				100	
HM2110	Effective Communication	Е	2		2.0				100	
HM2210	Creative Writing	Е	2		2.0				100	
HM2220	Fashion in Context	Е	1	2	2.0				100	
HM2490	Introduction to Law	Е	1	2	2.0				100	
	Total				34.0	0.0	0.0	0.0		

Semester 4										
			Hours/ Week		Credits		Norm		Evaluatio n	
Code	Module Name	Category	Lecture	Lab/Tute	GPA	NGPA	GPA	NGPA	%VO	WE%
HM2310	Meditation	Е	2		2.0				100	
HM2610	Nutrition and Health	Е	2		2.0				100	
HM2460	Public Administration	Е	2		2.0				100	
HM2670	Video Production	Е		4	2.0				100	
HM2520	Intangible Heritage of Sri Lanka	Е	2		2.0				100	
HM2350	Western Classical Music	Е		4	2.0				100	
HM2470	Life skills for Engineers	Е		4	2.0				100	
HM2660	Digital Photography	Е		1	2.0				100	
HM2010	Sinhala as a Second Language	Е	2		2.0				100	
HM2030	Japanese as a Foreign Language	Е	2		2.0				100	
HM2040	Chinese as a Foreign Language	Е	2	2 2.0					100	
	Total				30.0	0.0	0.0	0.0		

Modules

Semester I

Semester	Code	Module Title	Credits	C/E/O	GPA / NGPA
1	CE1023	Fluid Mechanics	2.0	С	GPA
Hours	s/Week	Propagnicitas / Concentration	Evaluation %		/0
Lecture	Lab/Tutes	Frerequisites / Corequisites	CA	,	WE
2	2/4	None	20		80
Learning O	utcomes				
After compl	eting this modu	le, students should be able to,			
engi • dete equi • appl velo	ineering practic ermine hydrosta ilibrium and sta ly the concepts potities, pressure	e, atic forces on submerged surfaces/ bodies bility such surfaces/bodies in applications in e of conservation of mass, energy and moment s, flow rates, forces, etc., in applications in en	and assess engineering tum of fluid gineering pr	the condi practice, and s and deter actice.	itions for nd rmine the
Synabus Ot	itiine				
1. In 2. Ch 3. Fh 4. Fh 5. In	troduction: app naracteristics/ P uid Statics uids in Motion troduction to H	lications in fluid mechanics roperties of Fluids ydraulic machinery			

Semester	Code	Module Title	Credits C/E/O		GPA / NGPA		
1	CS1033	Programming Fundamentals	3.0	С	GPA		
Hours	s/Week	Dronoguigitog / Concentigitog	Ev	aluation 9	/0		
Lecture	Lab/Tutes	Frerequisites / Corequisites	CA	1	WE		
2	2	None	20		80		
Learning O	utcomes						
After compl	eting this modu	le, students should be able to					
• Dev	ice algorithms	to solve simple computational problems					
• Dev	elop programs	from algorithms using a high-level programmi	ing language	e (e.g., Pyt	hon)		
• Dev	elop programs	for simple control applications using embedde	d hardware	platforms			
Syllabus Ou	ıtline						
• Intro	oduction to Cor	nputing					
 Pytł 	non: Introductio	on, Operators, Expressions					
 Pytł 	non: Selection C	Control Structures					
 Pytł 	non: Loop Cont	rol Structures SP					
 Pytł 	non: Lists						
 Pytł 	non: Functions						
Data	Data Representation						
 Prol 	Problem Solving I						
 Prot 	Problem Solving II						
 Prol 	olem Solving II	Ι					
• Con	nputer System a	& Hardware I					
Con	nputer System a	& Hardware II					

Semester	Code	Module Title	Credits	C/E/O	GPA / NGPA			
1	EE1040	Electrical Fundamentals	2.0	С	GPA			
Hou	rs/Week	D ronoguigitog / Correquisitog	Ev	aluation 9	/0			
Lecture	Lab/Tutes	Prerequisites / Corequisites	CA	,	WE			
2	2/4	None	20		80			
Learning (Outcomes							
After comp	leting this modu	le, the student should be able to;						
• D	escribe the prac	tical aspects of basic circuit elements.						
• A	analyze ac circui	ts using series/parallel simplifications, voltage	e/current div	ision rules				
• S	olve three-phase	balanced circuits in terms of line quantities a	nd power.					
• Draw up a complete wiring circuit f a hushed and appreciate the importance f different								
• p	 protecting and safety devices 							
Syllabus O	utline							
1. C	verview of Elec	trical Engineering						
2. B	asic Circuit Eler	nents						
Р	hysical characte	ristics of linear circuit elements (resistors, ind	luctors and o	apacitors)	, voltage-			
C C	urrent relationsh	ips, voltage sources, solutions of resistive circ	uits using K	irchoff's la	aws.			
3. A	C Theory	ann warafann nananatana nhasan nannasan	tation com		antation			
3	madanaa admit	tance complex power and energy power factor	r corios/por	plex repre	figations			
II V	oltage/current di	vision rules AC circuit calculations	i, series/par	aner simpli	incations,			
4 T	hree Phase Bala	nced Circuits						
	efinition of bala	nced three phase systems, circuit diagrams, de	elta-star con	nection and	đ			
tı	transformation, per-phase equivalent circuit, power factor correction.							
5. C	Circuit Protection	and Basic Electrical Safety						
В	Basic components of a domestic electrical system, overcurrent/short circuit protection, earth							
le	eakage protection	n, devices, case studies						

Semester	Code	Module Title	Credits	GPA / NGPA	
1	MA1014	Mathematics	3.0	С	GPA
Hour	s/Week	Proroquisitos / Coroquisitos	Ev	valuation ⁽	%
Lecture	Lab/Tutes	Trerequisites / Corequisites	CA		WE
5/2	1	None	20 80		
Learning O	utcomes				
After the suc Identi and solve ba Use re Solve	ccessful comple fy basic operati asic eigenvalue eal functions of Differential Eq	tion of this course, students should be able to ons and functions of complex variables, explo problems for matrices. one real variable up to power series. uations up to second order linear with non-co	ore 3D geom	etry using	vectors
Syllabus Or	utline				
 equation Matrice Crame diago: Real Analysis 	ions of line and ces: transpose, a er's rule, Gauss nalization, matr	plane, vector product, scalar product, scalar upp plane, vector norms adjoint, determinant, inverse and trace of a ma ian elimination, echelon forms, rank, eigen va ix norms.	atrix, system lues and eig	of equatio	ns,
 Sets a supression Funct contin Basic value Seque 	nd Inequalities: mum and infimu ions, Limits and nuity, differentia Theorems: Int theorem, L'Ho ences and Series	Introduction to quantifiers and sets, real num um, completeness axioms. d Differentiability: relations, functions and th ability ermediate value theorem, extremum value th pital's rule. :: Convergence of sequences and series, mono	ber system, eir inverses, neorem, Rol tone conver	inequalitie , limit of a lle's theore gence theo	s, function, em, mean rem.
Power series Integration a • Riema • Leibn integr	s, Taylor's serie and ODE ann integration: iz rule, Integral rals, Improper in	integral as an area, First and second fundame bility of a continuous function, Integration by ttegrals: tests of convergence, gamma function	ntal theorem y parts, mea	ns of calcul n value the	lus, eorem for
 Ordin 	ary differential	equations: classification of ODEs (Linear and	l non-linear)	, First orde	er

• ordinary differential equations: variable separable, homogeneous, linear, Bernoulli Second order linear differential equations: equations with constant coefficients, Wronskian method

Semester	Code	Module Title	Credits C/E/O		GPA / NGPA		
1	ME1033	Mechanics	2.0	С	GPA		
Hour	s/Week	Prove surisites / Come surisites	Ev	aluation ⁶	%		
Lecture	Lab/Tutes	Prerequisites / Corequisites	CA		WE		
2	2/4	None	20		80		
Learning O	utcomes						
Upon comp	leting this cours	e, the students should be able to:					
 Calcu 	late sectional p	roperties of plane areas,					
 Calcu 	late internal for	ces in beams,					
 Identi 	fy statically de	terminate / indeterminate trusses, their stabili	ty and deter	mine force	es in truss		
memb	pers.						
• After	completing this	part (Dynamics) of the module, the students	should be ab	ole to:			
 Analy 	se the geometry	y of motion of particles, rigid bodies and 2D li	nkages,				
• Deter	mine forces and	l energy associated in particles and rigid bodie	s in motion,	,			
 Analy 	vse natural vibra	tions of damped, single degree of freedom sys	stems.				
Syllabus O	utline						
Statics							
 Prope 	rties of plane a	eas					
 Intern 	al forces (BMD	0 & SFD)					
 Princi 	iple of superpos	ition					
• Deter	mination of for	ces in assemblies of rigid bodies					
Dynamics							
 Funda 	amentals of Dyr	namics					
 Kiner 	natics of particl	es (rectilinear and curvilinear motion, relative	e motion, ge	neral moti	on in 2D)		
and ri	and rigid bodies (relative motion between two points in a rigid body, velocities in 2D link						
 mecha 	anisms, instanta	neous centre of rotation method, introduction	to accelerat	ion)			
 Kinet 	ics of particles	and rigid bodies (force, torque, work, energy	and power	, linear mo	omentum,		
angul	ar momentum)						
 Mech 	anical Vibration	18					
• Free vibrations (undamped and damped) of single degree of freedom systems.							

Semester	Code	Module Title	Credits	C/E/O	GPA / NGPA		
1	MT1023	Properties of Materials	2.0	С	GPA		
Hour	s/Week	Promo anticitas / Como anticitas	E	valuation %	, D		
Lecture	Lab/Tutes	Prerequisites / Corequisites	CA		WE		
2	2/4	None	20		80		
Learning Out	comes						
At the complet	tion of this modul	e, students should be able to;					
 Recogni 	ze the structure of	f metals, polymers and ceramics					
 Identify 	• Identify the relationships between the structure of materials, their properties and applications						
 Assess t 	he properties of e	ngineering materials					
Syllabus Outl	ine						
 Introduction 	ction to engineerin	g materials					
Structur	e of atoms, atomic	c theories, atomic bonding in materia	lls				
Crystal	structures and def	ects					
 Introduction 	tion to nanomater	ials					
 Mechan 	ical properties of	materials					
 Electrica 	Electrical properties of materials						
Degradation of Materials							
Function	Functional Materials and their applications						
Basic m	aterials selection						

Semester	Code	Module Title	Credits	C/E/O	GPA / NGPA		
1,2	EL1030	Language Skills Enhancement	2.0	С	GPA		
Hour	s/Week	D ronominitor / Conominitor	E	valuation %	, 0		
Lecture	Lab/Tutes	Prerequisites / Corequisites	CA		WE		
	2	None	100		0		
Learning Out	comes		•				
At the complet	tion of this modul	e students should be able to:					
 Demons 	trate having achie	eved the competencies for listening, s	speaking, read	ing and writ	ting		
(UTEL)	bands 6, 7 and 8 r	espectively)					
Syllabus Outl	ine						
 Listenin 	g comprehension:	spoken texts and dialogues					
• Speakin	g on given topics.						
Asking	questions and resp	bonding to questions.					
 Reading 	comprehension						
Summar	rising and synthes	ising					
 Describit 	Describing objects, mechanisms and processes						
Discussion/ writing activities							
 Describit 	Describing data and graphical information						
 Function 	nal grammar						

Semester II

Semester	Code		C/E/O	GPA / NGPA			
2	CH1051	Enginee	Engineering Thermodynamics				
Hours/Week		Cradita Branquisitas / Consquisitas		Evaluation %			
Lecture	Lab/Tutes	Creuits	Frerequisites / Corequisites	CA	WE		
2	2	3.0	None	40	60		
Learning Outcomes							

Learning Outcomes

On successful completion of this module, students are able to:

- LO1: Understand the basic concepts in thermodynamics.
- LO2: Recognize the applicability of Laws of thermodynamics in process industry.
- LO3: Analyse flow processes and nonflow processes.
- LO4: *Explain* the P-v-T behaviour of real and ideal gases.
- LO5: Describe different forms of energy and the limitations of the world's energy resources.
- LO6: Apply Laws of thermodynamics for cyclic processes and liquefaction processes.

Syllabus Outline

Basic concepts in Thermodynamics

Scope and limitations of thermodynamics, Systems and processes, State and properties, Phase rule, Zeroth Law, Heat reservoirs and Heat engines, Different flow patterns

First Law of Thermodynamics

Moving boundary, General energy balance relation, Specific heats, Relations for the internal energy and enthalpy of ideal gases; General conservation of mass relation for control volumes, Flow work and the energy of fluid streams

P-v-T behaviour

Various property diagrams and P-v-T surfaces of pure substances, Property tables, Ideal-gas equation of state, Compressibility factor, Deviation of real gases from ideal-gas behaviour: van der Waals, Beattie-Bridgeman, and Benedict-Webb-Rubin equations

Second laws of Thermodynamics

Various statements of the second law, Perpetual motion machines and the thermodynamic temperature scale, Clausius inequality and the basis for the definition of entropy, Increase of entropy principle, Isentropic processes, Steady flow work

Applications of the Laws of Thermodynamics

Energy: Concept of energy, Reversible work, Energy destruction, Second-law efficiency, Exergy balance

Flow processes: Continuity and energy equations, Flow in pipes, nozzles, ejectors, and compressors Refrigeration: Refrigerators and heat pumps, Reversed Carnot cycle, Vapor-compression refrigeration cycle, Introduction to gas refrigeration cycles

Liquefaction processes: Vaporization of liquid, Free expansion, Isentropic expansion

Steam power plants: Carnot vapor cycle, Rankine cycle and applications

Internal combustion engine: Carnot cycle, Air standard assumptions, Reciprocating engines, Auto cycle, Diesel cycle

Gas-turbine power plants: Brayton Cycle

Semester	Code		Module Title	C/E/O	GPA / NGPA	
2	CH1044		Fluid Dynamics	С	GPA	
Hours	s/Week	Credita	Proposizion / Coroquisitos	Evalu	ation %	
Lecture	Lab/Tutes	Creuits	r rerequisites / Corequisites	CA	WE	
3	2	4.0	CE1023	40	60	
Learning Outcomes						

After completing this module, the students should be able to,

- LO1: Understand the general concepts of momentum transport.
- LO2: Recognize different flow patterns and analyze their applications.
- LO3: Use integral analysis and differential analysis techniques to analyze fluid flow.
- LO4: Apply dimensional analysis and conservation laws in solving problems in fluid flow.
- LO5: Design basic fluid flow systems in process industry.

Syllabus Outline

General concepts of momentum transport

Viscosity, Mechanisms of momentum transport: molecular momentum transport and convective momentum transport, Analogy of mass, momentum and energy transport, Conservation Laws: continuity equation, momentum equation and energy Equation.

Different flow patterns

Laminar and Turbulent behaviour of fluid flow, Flow of a falling film, Flow through an annulus, Flow between parallel plates, Rotational viscometers, Power transmission between parallel discs, Creeping flow, Fully developed pipe flow, Pressure drop and head loss, Effect of gravity on velocity and flow rate, Newtonian and Non-Newtonian flow in pipes, Roughness of the walls of the pipe, Boundary layer and the viscous sub layer, Eddy viscosity, Moody diagram, Reynolds stress, Prandlt's mixing length theory, Velocity distribution in turbulent flow.

Differential analysis of fluid flow

Differential equations of fluid motion: continuity equation, Euler's Equation and Navier Stokes Equation, Stream function, Boundary layer approximation, Boundary layer thickness, Momentum integral equation, Laminar and turbulent boundary layers, Boundary layers with pressure gradients, Friction and pressure drag.

Dimensional analysis and application of conservation laws

Dimensions, units, Dimensional homogeneity, Dimensional analysis and similarity, Buckingham pi theorem, Pump scaling laws, Pump types, Fundamental parameters in analysing pumps, Pump performance curves and Matching a pump to a piping system, Pump cavitation and Net positive suction head, Minor losses, Series and parallel pipes, Piping systems with pumps and turbines, Flow rate and velocity measurements, Mixing and agitation.

Compressible fluid flow

Compressibility, Mach number, Stagnation properties, One dimensional isentropic flow, Isentropic flow through nozzles, Normal shock waves, Duct flow with heat transfer and negligible friction, Adiabatic duct flow with friction.

2 CH1061 Chemical and Bioprocess Engineering Principles CC Hours/Week Credits Prerequisites / Corequisites I Lecture Lab/Tutes Credits Prerequisites / Corequisites I 3 2 4.0 None 40 Learning Outcomes After completing this module, the students should be able to, I I 0 LO1: Understand the evolution of chemical and bioengineering LO2: Select unit operations necessary for a given process LO3: Identify resources required for a process based on internal and extern 0 LO4: Perform material balance and energy balance calculations for a give LO5: Estimate resource requirements and process parameters using mater balance 0 LO6: Explain the importance of the steps associated with the process scalit the chemical and process industry LO7: Develop a process flow sheet Syllabus Outline Introduction to Chemical Engineering Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere energy- renewable and non-renewable Biosphere, hydrosphere atmosphere and biosphere	GPA Evaluation % WE 0 60 nal constraints n system						
Hours/Week Credits Prerequisites / Corequisites I 3 2 4.0 None 40 Learning Outcomes After completing this module, the students should be able to, 40 LO1: Understand the evolution of chemical and bioengineering LO2: Select unit operations necessary for a given process LO3: Identify resources required for a process based on internal and extern LO4: Perform material balance and energy balance calculations for a give LO5: Estimate resource requirements and process parameters using mater balance LO6: Explain the importance of the steps associated with the process scalit the chemical and process industry LO7: Develop a process flow sheet Syllabus Outline Introduction to Chemical Engineering Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere energy- renewable and non-renewable	Evaluation % WE 0 60 1 60						
Lecture Lab/Tutes Creatilis Prerequisites / Corequisites CA 3 2 4.0 None 40 Learning Outcomes After completing this module, the students should be able to, EQ1: Understand the evolution of chemical and bioengineering LO1: Understand the evolution of chemical and bioengineering LO2: Select unit operations necessary for a given process LO3: Identify resources required for a process based on internal and extern LO4: Perform material balance and energy balance calculations for a give LO5: Estimate resource requirements and process parameters using mater balance LO6: Explain the importance of the steps associated with the process scaling the chemical and process industry LO7: Develop a process flow sheet Syllabus Outline Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere energy- renewable and non-renewable	A WE 0 60 nal constraints n system						
3 2 4.0 None 40 Learning Outcomes After completing this module, the students should be able to, • LO1: Understand the evolution of chemical and bioengineering • LO2: Select unit operations necessary for a given process • LO3: Identify resources required for a process based on internal and extern • LO4: Perform material balance and energy balance calculations for a give • LO5: Estimate resource requirements and process parameters using mater balance • LO6: Explain the importance of the steps associated with the process scaling the chemical and process industry • LO7: Develop a process flow sheet Syllabus Outline Introduction to Chemical Engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere energy- renewable and non-renewable) 60 nal constraints n system						
 Learning Outcomes After completing this module, the students should be able to, LO1: Understand the evolution of chemical and bioengineering LO2: Select unit operations necessary for a given process LO3: Identify resources required for a process based on internal and extern LO4: Perform material balance and energy balance calculations for a give LO5: Estimate resource requirements and process parameters using mater balance LO6: Explain the importance of the steps associated with the process scaling the chemical and process industry LO7: Develop a process flow sheet Syllabus Outline Introduction to Chemical Engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere energy- renewable and non-renewable. 	nal constraints n system						
 After completing this module, the students should be able to, LO1: Understand the evolution of chemical and bioengineering LO2: Select unit operations necessary for a given process LO3: Identify resources required for a process based on internal and extern LO4: Perform material balance and energy balance calculations for a give LO5: Estimate resource requirements and process parameters using mater balance LO6: Explain the importance of the steps associated with the process scalit the chemical and process industry LO7: Develop a process flow sheet Syllabus Outline Introduction to Chemical Engineering Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere energy- renewable and non-renewable.	nal constraints n system						
 LO1: Understand the evolution of chemical and bioengineering LO2: Select unit operations necessary for a given process LO3: Identify resources required for a process based on internal and extern LO4: Perform material balance and energy balance calculations for a give LO5: Estimate resource requirements and process parameters using mater balance LO6: Explain the importance of the steps associated with the process scali the chemical and process industry LO7: Develop a process flow sheet Syllabus Outline Introduction to Chemical Engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere energy- renewable and non-renewable.	nal constraints n system						
 LO2: Select unit operations necessary for a given process LO3: Identify resources required for a process based on internal and extern LO4: Perform material balance and energy balance calculations for a give LO5: Estimate resource requirements and process parameters using mater balance LO6: Explain the importance of the steps associated with the process scali the chemical and process industry LO7: Develop a process flow sheet Syllabus Outline Introduction to Chemical Engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere energy- renewable and non-renewable.	nal constraints n system						
 LO3: <i>Identify</i> resources required for a process based on internal and extern LO4: <i>Perform</i> material balance and energy balance calculations for a give LO5: <i>Estimate</i> resource requirements and process parameters using mater balance LO6: <i>Explain</i> the importance of the steps associated with the process scalit the chemical and process industry LO7: <i>Develop</i> a process flow sheet Syllabus Outline Introduction to Chemical Engineering Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere energy- renewable and non-renewable.	nal constraints n system						
 LO4: <i>Perform</i> material balance and energy balance calculations for a give LO5: <i>Estimate</i> resource requirements and process parameters using mater balance LO6: <i>Explain</i> the importance of the steps associated with the process scaling the chemical and process industry LO7: <i>Develop</i> a process flow sheet Syllabus Outline Introduction to Chemical Engineering Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere energy-renewable and non-renewable	n system						
 LO5: <i>Estimate</i> resource requirements and process parameters using mater balance LO6: <i>Explain</i> the importance of the steps associated with the process scaling the chemical and process industry LO7: <i>Develop</i> a process flow sheet Syllabus Outline Introduction to Chemical Engineering Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere energy-renewable and non-renewable	ial and an anary						
 balance LO6: <i>Explain</i> the importance of the steps associated with the process scaling the chemical and process industry LO7: <i>Develop</i> a process flow sheet Syllabus Outline Introduction to Chemical Engineering Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere energy-renewable and non-renewable.	iai and energy						
 LO6: <i>Explain</i> the importance of the steps associated with the process scaling the chemical and process industry LO7: <i>Develop</i> a process flow sheet Syllabus Outline Introduction to Chemical Engineering Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere energy-renewable and non-renewable 							
the chemical and process industry LO7: <i>Develop</i> a process flow sheet Syllabus Outline Introduction to Chemical Engineering Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere energy- renewable and non-renewable	ng up applying to						
LO7: Develop a process flow sheet Syllabus Outline Introduction to Chemical Engineering Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphe energy-renewable and non-renewable							
Syllabus Outline Introduction to Chemical Engineering Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphere energy- renewable and non-renewable							
Introduction to Chemical Engineering Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphe energy- renewable and non-renewable							
Introduction to Bioprocess engineering Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphe energy- renewable and non-renewable							
Natural resources Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphe energy- renewable and non-renewable							
Sources of materials; materials from geosphere, hydrosphere atmosphere and biosphe energy- renewable and non-renewable							
energy-renewable and non-renewable	re; Sources of						
Process Development							
Concept of process development, design constraints, steps involved in process design.							
Unit Operations							
Flow sheeting							
Flow sheeting	nuter aided flow						
speeting	puter alded now						
Matorial Balanco							
Relances for non-reacting systems and reacting systems with single and multiple reac	tions						
Energy Balance							
Balances for non-reacting systems and reacting systems with single and multiple reac	tions						
Transport phenomena							
Transport of mass, heat, and momentum							
Utilities and instrumentation							
Steam production and distribution, types of boilers, cooling water and tower, air com	pressors, positive						
displacement and dynamic pumps, types of volves, cooling water and tower, an compressors, positive							

Semester	Code		C/E/O	GPA / NGPA					
2	CH1071	Chemistry and Gre	С	GPA					
Hours	s/Week	Credite	Eval	uation %					
Lecture	Lab/Tutes	Cituits	Trerequisites / corequisites	CA	WE				
2	2	3.0	None	40	60				
Learning (Learning Outcomes								
After comp	leting this mod	lule, the students sho	buld be able to;						
•]	LO1: Acquire	the knowledge on in	termolecular interactions and properties of matte	er and solut	ions, and use				
i	it to understand	d various chemical e	ngineering processes						
•	LO2: Discuss	the phase equilibria,	chemical equilibria and acid-base equilibria and	apply the	knowledge in				
•	Industriar appr	inciples of electroch	emistry to evaluate the interaction between elect	rical energ	v and				
• 1	charged chemi	cal species	emistry to evaluate the interaction between elect	fical cherg.	y and				
•]	LO4: Distingu	ish different organic	reaction mechanisms and apply natural product	chemistry	in related				
i	industrial appli	ications							
•]	LO5: Select the	e most suitable poly	merization mechanism and process and use them	ı in designi	ng the				
1	polymer manu	facturing process							
•]	LO6: <i>Apply</i> an	alytical chemistry k	nowledge in quantitative and qualitative analysis	s of chemic	al				
(compounds and	d evaluate chemical	changes	.					
•	LO/: Acquire	the basic knowledge	in green chemistry and practice it in good manu	ifacturing p	processes				
Synabus C	f Mattar								
Intermolecula	ar and intramoled	cular interactions. Effec	et of molecular interactions on properties of solids. Liqu	iids and gase	es. Properties				
of gases, Gas	laws		r	0	, 1				
Phase Equili	bria								
for one comp	f phase, Compor	ent and degrees of free	dom, Phase rule and its derivations, Definition of phase for two component systems. Three component system	e diagram, Pl	hase equilibria				
Properties of	f Solutions	iquid vapor equilibriuli	Tor two component systems, Three component system	3					
Solubility and	d dissociation pro	ocess, Saturated solution	ons and solubility, Factors affecting solubility, Solubilit	y product co	nstant,				
Colligative pr	roperties, Mixtur	res and Colloids							
Equilibrium d	constants and the	ir quantitative depende	ence on temperature, pressure and concentration, Relation	ons of variou	ıs equilibrium				
constants, Re	lationship betwe	en chemical kinetics ar	nd chemical equilibrium, Factors affecting chemical equ	uilibrium	-				
Acid-Base E	quilibria	alamantany idaa). Jania	ation of work and work bases in among a buties	Indigation	constants				
Ionic product	of water	elementary idea), ioniz	ation of weak actos and weak bases in aqueous solution	i, ionization	constants,				
Electrochem	istry								
Quantitative :	aspects of Farada	ay's laws of electrolysi	s, rules of oxidation/reduction of ions based on half-cel	l potentials,	Chemical cells,				
(reduction) p	d irreversible cel	is with examples, Elect	romotive force of a cell and its measurement, Nernst ed	quation; Stan	dard electrode				
Applied Org	anic Chemistry	and Reaction Mecha	nisms						
Introduction	to types of organ	ic reactions and their n	nechanism: Addition, Elimination, Substitution and Rea	arrangement	reactions, The				
use of organi	c chemistry and	reaction mechanisms in	n industrial applications						
Free-radical p	olymerization, (Cationic polymerization	n, Anionic polymerization, Condensation polymerization	n, Ring-oper	ning				
polymerizatio	on, Coordination	polymerization			U				
Polymerizati	ion Processes	nolumorization Such	ancien polymerization and Emulsion polymerization						
Analytical C	hemistry:	i porymerization, susp	ension porymetization and Emuision porymetization						
Quantitative	and qualitative a	nalysis, Analytical sepa	arations, and Chromatographic techniques: Principles a	nd efficiency	of the				
technique, G	C, HPLC, Introd	uction to spectrometric	methods: IR spectroscopy, UV Visible spectroscopy, A	Atomic absor	ption				
Natural Proc	ducts and Indus	trial Applications	у						
Classification	n of natural produ	acts based on the chem	ical structure, manufacturing process and their application	ions					
Computation	nal Chemistry	C 11 X 1 1 1	1. 1. 1.						
Introduction	echanics and fore to Green Chen	ce neids, Molecular do nistry	cking, and simulations						
Introduction	to green chemist	ry, Driving factors of g	reen chemistry, 25 Years of progress, The future of gre	en chemistry	, Basic				
principles of	green chemistry	c.							

Semester III

Semester	Code	Module Title C/E/O GP/ NGI						
3	CH2631	Chen	С	GPA				
Hour	s/Week	Carlita	D	Evalu	ation %			
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE			
2	2	3.0	CH1051	40	60			
Learning Outcomes								
After	completing thi	s module, student	s should be able to,					
•	LO1: Unders	stand the chemical	l thermodynamic processes and find	l the feasibilit	y of such			
	processes.							
•	LO2: Apply t	he laws of thermo	odynamics to solve the problems rel	ated to chemi	cal changes.			
•	LO3: Determ	<i>ine</i> the heat excha	ange in chemical reactions.					
•	LO4: Analyz	e the thermodynar	nic properties of pure fluids and sol	utions.				
•	LO5: Derive	the relationships	of thermodynamic parameters for g	iven applicati	ons.			
•	LO6: Apply t	he thermodynami	c concepts to understand and evaluation	ate the phase of	equilibria and			
	chemical read	ction equilibria.						
Syllabus C	Dutline							
Syllabus Outline Basic concepts in chemical thermodynamics Thermodynamic processes involve in chemical changes: phase transitions, chemical reactions, dissolution, Basic definitions of thermodynamic properties based on chemical processes. Determination of enthalpy changes in chemical reactions: exothermic reactions, endothermic reactions, reversible reactions, Heat changes in dissolution, Phase transitions, Effect of temperature on heat capacity. Interpretation of thermodynamic laws for chemical processes: irreversible processes, reversible processes, thermal equilibrium, mechanical equilibrium, and material equilibrium. Thermodynamic properties of pure fluids Classification of thermodynamic properties. Gibbs free energy and Helmholtz free energy for chemical processes. Relationships among thermodynamic properties: Gibbs equations and Maxwell relations, Clausius-Clapeyron Equation. Fugacity, effect of temperature and pressure on fugacity, fugacity of solids and liquids. Activity, effect of pressure and temperature on Activity. Thermodynamic properties of solutions Partial molar properties, Chemical potential, Fugacity in solutions, Henry' Law and dilute solutions, Activity in solutions and Activity coefficients, Gibbs-Duhem Equations, Property changes of mixing, Heat effects of mixing. Phase equilibria Phase equilibria Phase equilibria Phase equilibria Phase equilibria Phase equilibria								

Semester	Code		Module Title	C/E/O	GPA / NGPA
3	CH2015	Не	at and Mass Transfer	С	GPA
Hours/Week		Evaluation		ation %	
Lecture	Lab/Tutes	Creatis	Prerequisites / Corequisites	CA	WE
3	2	4.0	CH1051, CH1044	40	60
т	0 4				

Learning Outcomes

After completing this module, students should be able to,

- LO1: Recognize the heat and mass transfer related equipment in the process industry.
- LO2: Understand basic principles of heat and mass transfer.
- LO3: Analyze heat and mass transfer problems using conservation equations.
- LO4: Calculate heat and mass transfer coefficients.
 - LO5: Understand the concepts related to mass exchanger design.
- LO6: *Design* a heat exchanger for a given duty.

Syllabus Outline

Introduction

Momentum, heat, and mass transfer analogies, three modes of heat transfer mechanisms.

Heat Conduction

Derivation of general three-dimensional conduction equation, steady state one dimensional conduction equations for different geometries, thermal resistance concept & its importance, critical thickness of insulation, heat transfer in extended surfaces, one-dimension unsteady state heat conduction, Lumped system analysis, use of transient temperature charts (Heisler's charts).

Heat Convection

Concepts boundary layers, concepts of heat transfer coefficients, application of dimensional analysis for free convection and force convection, physical significance of dimensionless numbers related to heat convection, use of correlations of free convection and force convection.

Heat Transfer with phase changes

Types of condensation, Nusselt's theory for laminar condensation on a vertical flat surface, use of correlations for condensation; regimes of pool boiling, pool boiling correlations.

Thermal Radiation

Definitions of various terms and laws used in radiation heat transfer, radiation heat exchange between two parallel infinite black surfaces and two parallel infinite Gray surfaces, effect of radiation shield, radiation heat exchange between two finite surfaces, electrical analogy for Gray body heat exchange, gaseous radiation.

Design of Heat Exchangers

Classification of heat exchangers, overall heat transfer coefficient, fouling, and fouling factor, LMTD, Effectiveness-NTU methods of analysis of heat exchangers.

Molecular mass transfer

Introduction to mass transfer, definitions of various terms used in mass transfer, Fick's Law, differential equation of mass transfer, state and unsteady state molecular diffusion, diffusion through a stagnant gas film, equimolecular counter diffusion, diffusion in liquids, diffusion in solids.

Convective Mass Transfer

Significant parameters in convective mass transfer, convective mass transfer coefficients, application of dimensional analysis to mass transfer, physical significance of dimensionless numbers related to mass transfer, convective mass transfer correlations, Mass transfer between phases, overall mass transfer coefficient.

Design concepts of Mass Exchangers

Principles involving design of mass exchangers, height of packing, number of transfer units, height of transfer units, mass exchanger design procedure, Applications of mass transfer principles in process industry.

Semester	Code		Module Title	C/E/O	GPA / NGPA			
3	CH2160	Bioproces	s Engineering and Practices	С	GPA			
Hours/Week				Evaluation %				
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	СА	WE			
2	2	3.0	None	40	60			
Learning Outcomes								
After completing this module, the student should be able to,								
• I	.O1: Discuss th	he integration of c	hemical engineering and biotechno	logy for the s	ynthesis of			
b	oioproducts.							
• I	.O2: Recognize	e the principles ar	d applications of bioprocess engine	ering.				
• I	LO3: Identify a	nd analyse param	eters critical for process control in b	oiotechnologia	cal processes.			
• I	.04: Describe	upstream and dov	vnstream aspects of industrial biopr	ocesses.				
• I	LO5: Evaluate	the important asp	ects in bioprocess engineering for c	ommercializa	tion of			
b	pioproducts and	l maintaining pro	duct safety.					
• I	.06: Demonstr	<i>rate</i> knowledge or	the applicability of bioprocess eng	ineering for d	leveloping a			
S	ustainable bio	economy.						
Syllabus C	Dutline							
engineering manufactur Adopting p Process par adapting p food indust Biomolecu Describe b potential ag understand Bioprocess Advantage processing parameters Cell cultiv Microorgan measureme Engineerin Sterile prace Biohazard	g approaches f ring processes. natural pheno rameters in bio rocesses, subst try lar compositi poincolecular of polications and ing computations s of bioprocess in biochemia s ation for biop nisms for biop pent in bioproces ng practices in ctices, techniqu s and biosafe	or value addition on value addition on a sapplication ological processes ances, devices, or on in valorization composition of v d downstream pro- onal methods in va- ses over convention cal engineering, iderations in biop rocesses rocesses, microbi- sses, recent advan- n bioprocesses to microbiolo ty in bioprocesses	to bioresources, bioprocesses to en tions in bioprocess engineering , enzymatic reactions for sustainabl systems that resemble nature, appli n of bioresources arious bioresources, effect of bio cesses, effect of biochemical comp alorization. onal processes, introduction to unit of brief introduction to bioreactor rocess engineering. al growth requirements for differer ces in cell cultivation, introduction to gically safe production processes, f	hance the sus e production, ications from ochemical con osition on pro- operations and operations and operation an at applications o microbial gr ood-water-en-	stainability of biomimetics: nature for the mposition on oduct quality, I downstream d bioprocess s, cell growth rowth kinetics ergy nexus			
Pathogens and contaminants, discussion with reference to exposures and incidents, biohazards, and								
Fnzymes in process industry								
Advantages of enzyme catalysed reactions over chemical catalysts, enzyme synthesis, parameters critical for enzymatic activity								

Semester	Code		Module Title	C/E/O	GPA / NGPA
3	CH2170	Laboratory Practices I		С	GPA
Hours/Week (spread over two semesters		Credits	Prerequisites / Corequisites	Evaluation %	
Lecture	Lab/Tutes			CA	WE
0	6	3.0	Prerequisites: CH1044, CH1071 Corequisites: CH2160, CH2015	100	0

Learning Outcomes

After completing this module, the student should be able to:

- LO1: *Understand* the basics of engineering drawing and Draw the orthographic projections of a given mechanical part or assembly.
- LO2: *Recognize* suitable software tools for chemical and process engineering applications.
- LO3: Apply software tools to analyse fluid dynamics and heat & mass transfer applications.
- LO4: *Understand* the basic concepts and techniques relevant to fundamentals in chemical and process engineering.
- LO5: *Apply* appropriate methods to plot, analyse and present experimental results, and verify principles when applicable.

Syllabus Outline

Laboratory Practices I module covers the practical aspects of fundamentals in Chemical and Process Engineering (CH1044, CH1071, CH2160, and CH2015) and provide introduction to engineering drawing and computer aided learning.

Engineering Drawing and Computer Aided Learning

Engineering drawing (Part drawing, assembly drawing -manual); Introduction to engineering drawing and drawing software packages (AutoCAD®/ SOLIDWORKS®).

Introduction to MATLAB- matrix, loops and arrays, development of script and function files.

Computational methods for heat and mass transfer: introduction to computational fluid dynamics and development of heat and mass transfer models (1-D model solving by MATLAB®).

Dynamic behaviour of systems and stability-Linear State Space Models (development of lump model based on CH1044 and CH2015, pressure in distributed gas pipe-model development and simulation by Python)

Laboratory Experiments (8 Sessions)

(1) Centrifugal pump demonstration; Flow meter demonstration. (2) Determination of hardness of water.

(3) Synthesis of ethyl butanoate. (4) Identification of biomolecules. (5) Isolation and identification of microorganisms

(6) Determination of outside heat transfer coefficient of circular pipes. (7) Study of analogy between fluid friction and heat transfer/ Demonstration on gas and liquid diffusion. (8) Determination of viscosity index of petroleum oil and proximate analysis of coal.

Open-ended lab

Problem-Based Learning method is used in this experimental base project, where students are given the freedom to develop their own laboratory work, instead of merely following the already set guidelines.

Semester IV

Semester	Code		Module Title	C/E/O	GPA / NGPA				
4	CH2151	1	С	GPA					
Hours/Wook					tion %				
Hours/ Week		Credits	Prerequisites / Corequisites	Evalua	1011 /0				
Lecture	Lab/Tutes			CA	WE				
3	2	4.0	CH1044, CH1061	40	60				
Learning Outcomes									
After comp	After completing this module, students should be able to:								
• I	.01: Derive go	overning equation	s for the motion of particle/s in a flu	id					
• L	.02: Calculate	and analyze size.	, shape, size distribution of a particle	e system					
• L	.O3: Analyze t	he flow characteri	stics of fluid flow in packed beds an	d fluidized be	eds and unit				
d	esign								
• [.O4: <i>Select</i> sui	table operation an	id equipment for the given operation	in handling p	articulate				
• 1	Ω_{5} : Design p	rocess equipment	for handling generation and senara	tion of particu	late matter				
• 1	.06: Design pl	fundamentals of r	anoparticles and investigate its appl	lications in ch	emical				
e	ngineering pra	ictice	anoparticles and investigate its appr	incutions in en	enneur				
Syllabus C	outline								
De d'ala D	•								
The Motion	ynamics Nof a Single P	article in an Infini	ite Extent of Eluid Equation of moti	on Pownold N	Jumber				
Suspension	Settling Class	sification of Parti	cles based on terminal settling veloc	oli, Reyllolu I	Number,				
Particle St	Suspension Settling, Classification of Particles based on terminal settling velocities								
Mean diam	eters, particle	shape. Non spher	ical particles, equivalent diameters.	particle size o	listributions.				
Particle siz	e Analysis			r					
Size reduc	tion, enlarger	nent and Blendir	ng of solids						
Powder te	chnology		-						
Powder sta	tics and the de	sign of hoppers							
Analysis of	f fire and haza	rds of powders in	industry						
Flow of flu	ids through p	orous solid beds							
Ergun's eq	uation for, Pre	ssure Drop Acros	s the Bed. Carmen and Kozeny equa	tion, Burke, a	and Plummer				
equation.	wo Phase Flo	ow Through Porc	bus Solid Beds, Loading and Flood	ling condition	ns. Diameter				
calculation	for gas-liquid	contact equipmer	it						
Introductio	n to Eluidizati	on Minimum Flu	udization condition Pressure drop	Eluid velo	city relation				
Entrainmer	n to Fluidized	beds Heat Trans	fer in fluidized beds, fluidized bed	design Scale	up Spouted				
Beds Hydraulic and Pneumatic Conveying									
Solid Liquid Senaration									
Classification of solid liquid separation equipment, Sedimentation, Design of Thickeners									
Filtration -	Filtration -Modes of filtration, Equations for filtration rate, Filtration equipment, Filter area calculation.								
Classification of filters. Membrane separation processes									
Centrifugation- The basic principle of centrifugation, Classification of Centrifuges, Separation of two									
immiscible	immisciple liquids in a centrifuge. Solid-liquid separation in a centrifuge, Maximum stress on the walls of								
the centrifu	ige								

Dust and Mist Separation from Gas Streams

Gas cleaning techniques, gravity settling, momentum separators, scrubbers, filters, electrostatic precipitators, magnetic precipitators cyclones, reverse flow cyclone design

Nanotechnology

Introduction to nanotechnology, discuss nanoparticles as a major branch of nanotechnology, compare different options in synthesis, separation, characterization, and applications of nanoparticles in chemical engineering domain.

Crystallization

Principles of crystallization, Nucleation, Kinetics of crystallization, Heat and mass balance, yield, equipment, and design calculations

Semester	Code		C/E/O	GPA / NGPA	
4	CH2180	S	eparation Processes	С	GPA
Hours/Week		Cruedite	Promo anticitas / Como anticitas	Evaluation %	
Lecture	Lab/Tutes	Creans	Prerequisites / Corequisites	CA	WE
3	4	5.0	CH1061	40	60

Learning Outcomes

The students will learn the design and operation of standard separation processes used in the chemical industries; Distillation, Absorption/Stripping, Extraction, Adsorption, Drying, Humidification and Evaporation.

At the end of the course the students are expected to;

- LO1: Analyse the desired separation and select the suitable Unit Operation
- LO2: Describe principles and equilibrium concepts in separation processes
- LO3: Apply material and energy balances for the separation processes
- LO4: *Describe* the effects of various operating variables on the separation output
- LO5: *Design* separation process equipment based on graphical or algebraic analysis

Syllabus Outline

Introduction

Introduction to the role of separation; Common separation processes; Mechanism of separation.

Distillation

Vapor-liquid Equilibrium for binary and multicomponent systems, Differential Distillation, Equilibrium Flash Distillation, Continuous Distillation with Reflux, McCabe-Thiele Analysis, Multistage Batch Distillation, Multiple feeds, side streams, FUG method, Lewis and Matheson method, Complex distillation methods – azeotropic, extractive and two pressure distillation, Design of tray distillation columns and column internals.

Gas Absorption & Stripping

Gas-liquid equilibrium,

Determination of Number of Ideal Stages by graphical method, Theoretical Method (Kremser Equation) Determine the height of continuous contact separator HTU NTU method, Packed column design.

Solvent Extraction

Introduction to Liquid-Liquid Extraction, Phase equilibrium for partially miscible systems, Triangular diagram, Modes of Extraction, Solvent Selection, Phase equilibrium for Immiscible systems Solid-Liquid Extraction, Super Critical Extraction, Determination of number of equilibrium stages for extraction, Extraction column design.

Adsorption and ion exchange

Types of adsorbents, Adsorption equilibrium, modes of adsorption, single stage, cross flow, countercurrent and fixed adsorption unit design calculations, Breakthrough curves, adsorption regeneration, ion exchange resins, equilibrium, kinetics, and equipment.

Evaporation

Introduction to evaporation, Boiling Point Rise (BPR) and Dühring charts, Single stage evaporator calculations, Multiple stage evaporator calculations, Discuss on various modes of evaporators and their industrial applications, Vapor re-compression in evaporators.

Humidification Operations

Basic principles on Humidification Operations, Sample problems to understand the basic terms in humidification. Introduction to psychometric chart and its applicability for humidification and dehumidification operations, Introduction to cooling tower working principle, Preliminary design calculations for cooling towers and spray chambers based on mass and energy balance.

Drying

Introduction to basic principles and Drying curves, Identify the drying process on a psychrometric chart for a given scenario, Different modes of Drying, Calculations to determine the drying parameters under different modes of drying, Dryer design.

Semester	Code		C/E/O	GPA / NGPA					
4	CH2210	Materials for Engineering Applications		С	GPA				
Hours/Week				Evaluation %					
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE				
2	2	3.0	None	30	70				
Learning Outcomes									
After comp	After completing this module, students should be able to;								
•	LO1: Unders	stand the structure	, function, properties of materials use	ed in industria	ıl				
	applications								
•	LO2: Identify	v the suitable mate	erials for a given application						
•	LO3: Recogn	<i>tize</i> the different t	ypes of material failures						
•	LO4: Choose	e appropriate corro	osion preventing methods						
•	LO5: Differe	ntiate the materia	l treatment methods for engineering	performance					
٠	LO6: Apply t	he correct proced	ures for material selection						
Syllabus O	Outline								
Overview	to materials u	sed in Chemical	Engineering Applications						
Classificati	on, types of m	aterials and their	properties.						
Metals	C . 1 ()	с с	11 X. 1 1 1						
Identificati	on of metals (1	terrous, non-ferro	us, alloys) to suit a given application	based on the	ir properties				
and machin	ability.	maahaniama and							
Non destru	ctive testing r	nechanisms and j	prevention.						
Corrosion:	types of cor	rosion mechanis	». ms selection of appropriate corros	ion preventio	on methods				
application	of the selected	d methods	ins, selection of appropriate corros	ion prevenue	ni metnous,				
Surface tre	atment method	ls.							
Ceramics									
Properties a	and application	ns of ceramics.							
Thermal tre	eatments for ce	eramics.							
Polymers									
Advantage	Advantages of polymer materials over traditional materials.								
Classification of polymers: Natural and synthetic polymers.									
Polymers (Elastomers, Plastics, Fibres, Thermoplastic Elastomers) used in the process industry, their									
structure-property relationships, and applications.									
Smart polymeric materials and advanced polymeric materials									
Additives used in polymer products									
Material Selection for Chemical Engineering Applications									
	And a second for chomen publicoring reprinting								

Semester	Code		Module Title	C/E/O	GPA / NGPA				
4	CH4501	Chemical Kinetics and Reactor Design		С	GPA				
Hours/Week		a n		Evaluation %					
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE				
3	2	4.0	CH1061, CH1051, CH1044, CH2160, CH2631, CH2015	40	60				
Learning Outcomes									
On success	On successful completion of this module, students are able to:								
•	LO1: Recogn	<i>vize</i> the reaction so	cheme and determine the rate law						
•	LO2: Unders	tand the theories	of adsorption and apply them in con	trolling the ra	ates of				
	reactions		I III	8					
•	LO3: Design	batch reactors, pl	ug flow reactors (PFRs), continuous	s stirred tank	reactors				
	(CSTRs) and	catalytic reactors	for the chemical and process indust	try					
•	LO4: Determ	<i>tine</i> a suitable read	ctor or a system for an application o	r a condition					
•	LO5: Analyze	e chemical reactor	performance using the distribution	of residence	times				
•	• LO6: Analyze and determine the concentrations of the reactants and products at certain								
	stages under	given conditions		1					
Syllabus O	outline	~							
Introducti	Introduction to kinetics and reactor design, Industrial application of reactors, Analysis of								
continuous	s flow reactor	s and non-flow r	eactors.						
Classificat	ion of chemic	al reactions, Rat	e laws, Determination of the order	r of a reactio	n, Influence				
of tempera	ture on react	ion rates and Ar	rhenius equation.						
Multiple r	eactions, Mol	ecular reaction d	ynamics:						
Collision th	neory and Tran	sition state theory	<i>.</i>						
Conversion	n and reactor	sizing:							
Design Equ	ations for flov	w reactors, reactor	rs in series.						
Isotherma	l reactor desig	gning:							
Liquid pha	se reactions an	id gas phase reaction	ions.						
Steady star	te non isother	mal reactor desig	gning:						
Adiabatic d	perations	annal naastan d	a i an in a						
Disteauy s	ora Somi hat	h reactors unstag	esigning:						
Physicorne	ion and chom	isorntion Adsor	ntion isotherms (Langmuir From	ndlich) Non	competitivo				
and nondissociative									
Catalysis a	Catalysis and Catalytic reactors Definition properties and classifications of catalysis Stops in								
catalytic reaction									
Homogeneous and Heterogeneous catalysts:									
Synthesis,	Synthesis, applications, regeneration, and troubleshooting. Chemical reactor performance using the								
distribution	distribution of residence times								

Semester	Code	Module Title			GPA / NGPA		
4	CH2270		С	GPA			
Hours/Week (spread over two semesters		Credits	Prerequisites / Corequisites	Evaluation %			
Lecture Lab/Tutes				CA	WE		
0	4	2.0	Prerequisites: CH2170 Corequisites: CH2151, CH2180, CH4501	100	0		

Learning Outcomes

After completing this module, the student should be able to:

- LO1: Apply graphical construction techniques for process equipment.
- LO2: Develop 3-D models using a CAD package.
- LO3: *Apply* software tools to develop, simulate, and analyse mathematical models for reactors, separators, and heat exchangers.
- LO4: *Understand* the concepts and techniques relevant to applications in chemical and process engineering.
- LO5: *Apply* appropriate methods to plot, analyse and present experimental results, and verify principles when applicable.

Syllabus Outline

Laboratory Practices II module covers the practical aspects in applications of Chemical and Process Engineering (CH2151, CH2180, and CH4501) and provides in-depth learning for engineering drawing and computer aided chemical engineering.

Engineering Drawing and Computer Aided Learning

Complete engineering drawing of process equipment using computer aided drafting software (SOLIDWORKS®).

Property analysis of chemical system using Aspen Plus®; Thermodynamic property methods, property analysis of pure components/binary/mixtures, VLE curves x-y diagram, ternary maps.

Process flow sheeting, simulation of equipment models and simulation of chemical process using Aspen Plus®; Development of mathematical models for reactors, separators, and heat exchangers (Excel and MATLAB®).

Laboratory Experiments (8 Sessions)

(1) Pressure drops in a packed bed and fluidized bed. (2) Filter press/Demonstration on centrifuge, cyclone, coagulation, and sieve analysis. (3) Pressure-drop over a bubble cap plate; H.E.T.P Distillation, (4) Soxhlet Extraction. (5) Adsorption. (6) Evaporation. (7) Batch reactor/ Plug flow reactor. (8) Determination of specific rate constant for first order hydrolysis of ethyl acetate.
Semester V

Semester	Code		Module Title C/E/O GPA / NGPA					
5	CH4045	I	Process Dynamics and Control	С	GPA			
Hours	s/Week	Condito	Drama arrivitar / Come arrivitar	Eval	uation %			
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE			
2	2	3.0	Prerequisites: CS1033, MA2014, MA3024 Corequisites: CH3034, CH3150	40	60			
Learning O	utcomes		•	•				
After comple	eting this modul	le, students	should be able to,					
•	• LO1: <i>Describe</i> the behaviour of 1st, 2nd and higher order dynamical systems.							
•]	LO2: Analyze li	near dynam	ical systems using mathematical tools suc	ch as Lapla	ce			
1	transforms etc.			1				
•]	LO3: Set up sim	ple feedbac	k loops using PID controllers and develo	pment of c	ontrol			
1	modules.			•				
•]	LO4: Implemen	t various PI	D tuning methods for controllers.					
•]	LO5: Design an	d Develop f	eedback controllers with various control	methods to	eliminate			
	disturbances.	1						
•]	LO6: Implemen	t and test ou	t their controller designs by using simula	tions.				
Syllabus Ou	ıtline		~ · ~					
Determine poo and unmeasur Dynamic Beh Stability of D Understand se An Introduct Transfer funct Transfer funct Transfer Func Lag Models. Introduction Development Disturbances, PID Controll Closed-Loop ((DS) method, Feedback Des Cascade and Cascade-Cont Structure, Cor Various control. Frequency-R Bode and Ny Robustness. Control-Loop The General F Pairings. Plantwide Co Steady-State a Fuzzy logic c Identification	ssible control obje ed), and constrain aviour ynamic systems of cond-order under ion to Laplace tr ion, Definition of tion Analysis of to Feedback Cor of Control Block Open-Loop Unsta er Tuning Oscillation-Based Internal Model 0 ign for Processes Feed-Forward C rol Analysis, Ca nbined Feed-Forv rol methods and Selective and Ov esponse Analysis quist Plots, Effect Dinteraction Pairing Problem, T introl and Dynamic Effe ontrol system of variables, Fuzz Combining fuzzy	ectives, input ts (hard or so understand fi -damped beh ansformatio The Laplace ' First-Order S htrol Diagrams, F able Systems. Uning, Tur Control (IMG with a Time Control (IMG with a Time Control scade-Control vard and Case control strue cot of Process The Relative cts of Recycl	variables (manipulated and disturbance) and ft), as well as classify the process as continuous rst-order, first order + dead time and integrat aviour, Routh Stability Criterion. n Transform, Poles and zeros, Time constant and systems, Responses of First-Order Systems. In the systems, Responses of First-Order Systems. In the systems of the systems of the systems of the systems, the constant and systems of the systems of the systems of the systems the systems of the	output varia s, batch, or s ing system resonance, 7 ntegrating Pr g Parameter esses. The D Gree Process Unstable Pro ward Contro ode and Ny CGA to Dete	bles (measured emicontinuous. step responses, Zero dynamics. rocesses, Lead- rs, Response to Direct Synthesis es, IMC-Based ocesses. ol in the IMC quist Stability, rmine Variable e configuration,			

Semester	Code		Module Title	C/E/O	GPA / NGPA					
5	CH3045	Plant Safe	Plant Safety, Health and Environment C GH							
Hours	s/Week	Charles 1.	D	Evaluat	ion %					
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE					
7/2	1	4.0	None	30	70					
Learning (Learning Outcomes									
On suc	 On successful completion of this module, students are able to: LO1: <i>Describe</i> basic principles related to safety and loss prevention in chemical and process industry. LO2: <i>Understand</i> environmental pollution and related problems. LO3: <i>Describe</i> environmental pollution control and management. LO4: <i>Explain</i> principles of sustainability. LO5: <i>Discuss</i> basics of safety in plant site layout design, operation, maintenance and modification and basics. of incident reporting, investigation and management and legislative framework. LO6: <i>Identify</i> hazards in chemical and process industry. LO7: <i>Apply</i> appropriate techniques or measures to avoid or reduce hazards. LO8: <i>Analyse and evaluate</i> hazards in chemical and process industry. 									
Toxicity ar Fire and ex Safety stra Inherent sat Identificati HAZOP, ev Personal p Noise and y Plant layou maintenan SHE incide Toxic relea Legal back Health and Precaution Introductio liquid, gass Introductio Environme	Introduction to plant safety, health, and environment Toxicity and chemical safety Fire and explosion hazards Safety strategies: Inherent safety, active, passive, and procedural safety Identification of process hazards, principles of risk assessment and safety management: HAZOP, event tree, fault tree Personal protective equipment, Ergonomics, Industrial diseases Noise and ventilation, thermal radiation Plant layout design for safety, hazardous area classification, safety in plant operation, maintenance and modification, relief, and blowdown. SHE incident and near miss reporting, investigation and management, human factors in safety Toxic release and dispersion Legal background: Health and safety at work Precautionary principle, responsible care Introduction to environmental pollution: liquid, gaseous, and solid pollutants, their sources, and characteristics Introduction to environmental impacts									
Principles Environme Introductio	Principles of engineering for sustainability Environmental protection regulations Introduction to waste minimization and pollutant treatment methods: at source and 'end-of-pipe'									

Semester	Code		C/E/O	GPA / NGPA				
5	CH3034	Pro	cess Equipment Design	С	GPA			
Hours/Week		Cradita			Evaluation %			
Lecture	Lab/Tutes	Creans	Prerequisites / Corequisites	CA	WE			
3	2	4.0	CH1044, CH1051, CH2015, CH2210	40	60			
Learning Outcomes								

After completing this module, student should be able to:

- LO1: *Understand* process equipment design philosophy, design codes, and standard formulae for economical and safe design of process equipment and auxiliaries
- LO2: *Explain* the operational principals of process measurement and instrumentation
- LO3: *Select* the design preliminaries and considerations, and auxiliaries for vertical and horizontal process vessels for safe design
- LO4: *Apply* mechanical design fundamentals for estimation of stresses in cylindrical process vessels, spherical and conical shells, and end closures
- LO5: *Calculate* safe thicknesses and requirements for compensation in openings for process equipment
- LO6: *Design* tall towers under combine loads and process vessels under external pressure to avoid their collapse
- LO7: *Apply* knowledge in Principals of Fluid Dynamics, Thermodynamics, and Heat transfer for economical and safe design of piping systems, turbines and compressors, and heat exchangers

Syllabus Outline

Mechanical design fundamentals

Bending moment and shear force, Bending stresses, Deflection, Buckling, Torsion, Impact loading and combined loading, General two-dimensional stress system, Principal stress and strain, Plain strain, Theories of failure, Analysis on failure criteria

Types of cylindrical shells and pressure vessels

Thin-walled cylinderical shells, Thin-walled spherical and conical shells, Volume changes of shells, Thick-walled cylinderical shells, Internal and external pressure vessels, end closures (flat, ellipsoidal, torispherical, and toriconical covers)

Mechanical design preliminaries and considerations for process equipment

Process equipment design codes, Structure of ASME boiler and pressure vessel codes, Classification of process equipment, Design pressure, Design temperature, Material Selection for process equipment, Design stress, Methodology, and procedure for mechanical design of process equipment, Welding types and efficiency, Safe design factors and allowances, Process equipment fabrication techniques

Internal Pressure Vessels Design

Mechanical design calculations for Thin walled and Thick-walled internal pressure vessels, Design of process equipment supports, Stiffener rings and auxiliaries, Compensation for openings, Anchor bolts, Vessel Installation

External Pressure Vessel Design

Mechanical design calculations for Thin walled and Thick-walled external pressure vessels **Design for combined loading on vessels and columns**

Design calculations for pressure vessels under combined loadings, such as weight loads, wind loads, external loads due to varios factors

Mechanical design of pipes, turbo machines, and heat exchangers

Pipe schedule number, Safe pipe thickness calculations and economic pipe diameter, Mechanical design calculations for pumping requirements, Mechanical design awareness for gas turbines/compressors,

TEMA design standards for tubular heat exchangers, Mechanical design awareness for heat exchangers **Process measurement and instrumentation**

Measurement techniques and intrumentation for temperature, pressure, level, flow, and mass/force parameters in process equipment operations

Semester	Code	Module Title C/E/O GPA / NGPA									
5	CH3055	Ener	gy Systems Engineering	С	GPA						
Hours	s/Week	~ .		Evalua	tion %						
Lecture	Lab/Tutes	Credits	Credits Prerequisites / Corequisites CA								
2	2	3.0	CH1051, CH1044, CH1061,	40	60						
			CH2015								
Learning	Learning Outcomes										
After comp	oleting this mo	dule, the student s	hould be able to:								
•	LO1: Unders	<i>tand</i> the energy p	roblem and identify the need for energy	gy efficiency	and						
	conservation										
•	LO2: Analyze	e combustion in st	eam and heating systems.								
•	LO3: Identify	v losses and evaluation	ate the performance of energy system	s.							
•	LO4: Apply r	ecovery methods	to the energy systems.								
•	LO5: Analyze	e energy systems	by performing energy audits.								
•	LO6: Evalua	te technical, envir	onmental, and economic feasibility of	f energy proje	cts.						
Syllabus C	Outline										
Introducti	on to industri	al energy system	s								
Country an	d world energ	y balance, The en	ergy problem, Need for energy efficient	ency and cons	servation in						
industrial e	nergy systems										
Combustic	on in steam ar	nd heating system	15								
Fuel types,	Combustion t	heory, Efficient co	ombustion, Combustion equipment.								
Industrial	steam system	S									
System de	scription (boil	ers, steam distrib	oution system, steam end users, cor	ndensate retur	rn system),						
System and	l subsystems p	erformance defini	tions.								
Boiler subs	system - Boiler	performance ana	lysis (direct/indirect methods, boiler]	losses), Facto	rs affecting						
boiler perfo	ormance (boile	r load, boiler desig	gn, fouling, controls, water quality), Pe	erformance in	provement						
opportuniti	es (combustion	n efficiency impro	ovement, load scheduling, waste heat r	ecovery, wate	er treatment						
improveme	ent, control imp	provement).									
Steam dist	ribution and	condensate retur	n subsystem - Performance analysi	s, Factors af	fecting the						
performance	e (steam lea	ks/heat transfer	loss through insulation/condensate	loss/flash st	eam loss),						
Performance	ce improvemen	nt opportunities.									
Heating sy	stems										
Types and	classifications	s (Ovens, Furnace	es, Kilns), Operation, Performance e	valuation (dir	ect/indirect						
methods, lo	osses), Energy	-saving and recover	ery opportunities.								
Refrigerat	ion systems										
Chilling a	nd chilled si	torage, freezing,	deep freezing, cold storage, dee	ep cold stor	age, vapor						
compressio	n/absorption s	systems, performa	ance definitions, factors affecting pe	erformance, p	erformance						
analysis, p	erformance im	provement oppor	tunities (maintenance, control, operation	tional - load/t	emperature						
lift/superne	at)										
Compress System day	eu air systems	i maanaa analiysia	(norforman as indicators, norforman a	a anamh) Mar	auromanta						
System des	termination (1	onnance analysis	(performance indicators, performance	e graph), Mea	tion						
Industrial	electric powe	r systems	ump-up test), renormance improvem	ent opportuni	1105						
Description	of industria	l electric power	evetame Basic terms Tariff evetar	n Main com	nonents of						
industrial	electric nove	r systems Porfa	armance assessment of industrial	alectric nove	ponents of						
Performan	ciccult powe	nt opportunities (load management demand control	nower factor	a systems,						
electric mo	tor drives)	nt opportunities (ioad management, demand colluloi,	power racior	concention,						
Energy m	inagement										
Main com	nonents goals	and phases of a	energy auditing Economic and envi	ronmental ev	aluation of						
energy pro	iects	, and phases of v	energy additing, Debitonine and envi	i sinnentur ev	and an of the second se						

Semester	Semester Code Module Title C/E/O GPA /										
5	CH3150	Chemical Pr	ocess Synthesis and Integration	C	OPA GPA						
5	CH5150	Chemicarri	Chemical Process Syndiesis and integration								
Hour	s/Week			Evalua	tion %						
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE						
2	2	3.0	CH1061, CH1051, CH2015, CH2180, CH4501	40	60						
Learning	Learning Outcomes										
On su On su Syllabus C	Learning Outcomes On successful completion of this module, students are able to: • LO1: Describe and Distinguish process synthesis methods. • LO2: Conduct process economics. • LO3: Understand reactor and separator performances. • LO4: Select reaction and separation systems. • LO5: Apply pinch analysis to energy and capital targeting. • LO6: Evaluate Utility Systems and heat integration of unit operations. • LO7: Design and optimize heat recovery networks										
Chemical continuous Process ec Capital and Selection o Reaction, recycling r Introducti Data Extra principles, Utility sele Multiple ut Heat Exch Types of h Design HE Combined Introductio Heat integ Furnace eff Heat Integ Endotherm Heat Integ	products, For and batch pro onomics d operating cos of reactor and separation and ecycle with pu on to Pinch A action, heat re Grid diagram, ection tilities, Grand manger Networ eat exchangers N using pinch Heat and Po on to heat pump gration of furr ficiency, Capit gration of reac ic and Exother gration of Sep ware for design	mulation of des cesses. sts, Simple econor of separator, op d recycle systems rging. analysis ecovery, Energy a Threshold proble Composite Curves rk Design s, Number of heat principles Loop F wer generations ps and engines intrace, cal energy trade of ctors rmic Reactors. arators, Distillati gn and optimizat	ign problem, Process synthesis to nic criteria. erating conditions, and configurati s for continuous and batch proces and capital cost targeting, Problem ms. s, Heat cascading, minimum approac exchanger units, heat exchanger targ Breaking, stream splitting. egration to process. f, Heat pipes, Recuperative and rege ion Columns, Evaporators and Dry ion of heat recovery networks	echniques, on ions. ses. Function n Table algori h temperature. et area nerative heat e yers	ion model, of process ithm, Pinch						

Intake	Intake 2020 Specialisation Chemical and Process Engineering								
Semester	Code		Module Title C/E/O						
5,6	CH3880	E	ngineer and Society	С	GPA				
Hours	s/Week	Con l'4	Cradits Praraquisitas / Coraquisitas		ation %				
Lecture	Lab/Tute	Credits	Prerequisites / Corequisites	CA	WE				
1	4	3.0	None	100	0				
Taamina	0								
A ftor com	outcomes	odulo, studente ur	ll be able to:						
	 After completing this module, students will be able to: LO1: <i>Demonstrate</i> an understanding of the responsibilities of the engineering profession and its social context LO2: <i>Demonstrate</i> an understanding of the health, safety and environmental requirements of the society LO3: <i>Practise</i> with integrity in the social context of the engineering profession with an understanding of ethical issues LO4: <i>Identify and apply</i> appropriate tools/ techniques for the evaluation of health, safety and environmental hazards/ consequences and risk assessment LO5: <i>Interpret</i> the engineers' role in ethically assuring healthy, safe and excellent environmental conditions targeting the overall sustainable development of the society LO6: <i>Ability</i> to critique technology 								
(Content is Intro other and t	Jutline indicative and duction to En relevant code publication	nd specifics in sect gineering Ethics - es of ethics, comm	ions may vary depending on the sp Historical context, moral responsi nunity standards and personal respo	ecialisation) bility, IESL co onsibility, ethic	de of ethics, s of research				
Ethic profe confl ethic	es in the Socie essions, social licting scenari al behaviour	ety & Workplace I responsibility, et ios and problems	Respect for social & cultural value hical decisions as individuals, iden in the field of engineering, leading	es, respect for o tifying ethical i organizations t	other ssues, owards				
 ethical behaviour Inclusive engineering concepts – ensuring that engineering products and services are accessible and inclusive of all users, and are as free as possible from discrimination and bias Legal requirements related to engineering practice – acts, ordinances and regulations Health & Safety – Definitions, areas and hazard identification, risk assessment, evaluation and management Health & Safety Management – Management practices, local regulations, global standard and best practices, designing of health and safety management systems, special topics Environment – managing the generation, transportation and disposal of waste in industry, overview of controlling and treatment technologies, local standards and EPL procedure, introduction to environmental impact assessment 									
Engi Case	neers' respon studies (indu	sibility in sustaina	ble development						

Industrial Training

Semester	Code		Module Title	C/E/O	GPA / NGPA					
Industrial Training	CH3994	Ι	ndustrial Training	С	NGPA					
Hours	s/Week	Credita	Pronoguigitog / Conoguigitog	Evalı	ation %					
Lecture	Lab/Tutes	Creans	Prerequisites / Corequisites	CA	WE					
-	-	6.0	None	100	0					
Learning (Outcomes									
After comp	leting this mo	dule, student shou	ld be able to,							
•	LO1: Apply I	knowledge and pri	nciples of chemical and process en	igineering.						
•	LO2: Unders	stand industrial sy	stems, procedures, practices, and p	rofessional e	thics.					
•	LO3: Design	solutions for indu	istrial/engineering problems using	modern tools	and					
•	LO4: Develo	n soft skills and n	rofessional attitudes required for in	ndustrial envi	ronment					
•	LO5: Recogn	<i>vize</i> social, cultura	l, and environmental responsibilitie	es as an engi	neer.					
Syllabus O	Syllabus Outline									
Knowledge and principles of chemical and process engineering										
Process analysis, Process plant operations/maintenance/troubleshooting, Energy efficiency and										
conservatio	on, Health-Saf	ety-Environmenta	l aspects of chemical processes, F	rocess instru	imentation and					
software platforms for process control systems, Quality control/assurance and monitoring process										

software platforms for process control systems, Quality control/assurance and monitoring process parameters for process improvement/development, Process diagrams and engineering drawings.

Industrial systems, procedures, and practices

Administration/financial/general management/logistics/HSE/legal practices in an industrial organization, Practices of professional ethics/personal relations, Organizational practices for process efficiency improvement, Regulations and standards.

Semester VI

6,7,8CH4751Research ProjectCGPAInternational Content of the second strain of the seco	Semester	Code		Module Title	C/E/O	GPA / NGPA
Hours/Week Credits Prerequisites / Corequisites Evaluation % Lecture Lab/Tutes 0 0 0 0 - 6 3.0 None 100 0 0 Learning Outcomes - 6 3.0 None 100 0 After completing this module, student should be able to: - 0 0 0 • LO1: Review literature critically and identify research gaps/problem. - 0 0 • LO2: Develop new experimental set ups/ models/strategies. - LO3: Develop creative thinking and self-integrity under challenging environment. • LO4: Analyze experimental/modelling results and draw conclusions. - LO5: Produce research findings as a publishable material. Syllabus Outline - - - - - Background study and problem identification - - - - - Literature review - - - - - - - - - - - - -	6, 7, 8	CH4751	R	esearch Project	С	GPA
LectureLab/TutesCreatisePrerequisites / CorequisitesCAWE-63.0None1000Learning OutcomesAfter completing this module, student should be able to:L.O1: Review literature critically and identify research gaps/problem.•LO2: Develop new experimental set ups/ models/strategies.•LO3: Develop new experimental/modelling results and draw conclusions.•LO4: Analyze experimental/modelling results and draw conclusions.•LO5: Produce research findings as a publishable material.Syllabus OutlineBackground study and problem identificationLiterature reviewResearch proposal developmentDesign of experimentalwork/modeling and simulationData analysis and interpretationReporting and publication of results	Hours	s/Week	Credita	Propagnizitas / Correquisitas	Evalu	ation %
- 6 3.0 None 100 0 Learning ∪tcomes After completing this module, student should be able to: LO1: Review literature critically and identify research gaps/problem. LO2: Develop new experimental set ups/ models/strategies. LO3: Develop creative thinking and self-integrity under challenging environment. LO3: Develop creative thinking and self-integrity under challenging environment. LO4: Analyze experimental/modelling results and draw conclusions. LO5: Produce research findings as a publishable material. Syllabus Outline Background study and problem identification Literature review Research proposal development Design of experimenta and experimental work/modeling and simulation Data analysis and interpretation Reporting and publication of results	Lecture	Lab/Tutes	Creatis	Frerequisites / Corequisites	CA	WE
Learning Outcomes After completing this module, student should be able to: LO1: Review literature critically and identify research gaps/problem. LO2: Develop new experimental set ups/ models/strategies. LO3: Develop creative thinking and self-integrity under challenging environment. LO4: Analyze experimental/modelling results and draw conclusions. LO5: Produce research findings as a publishable material. Syllabus Outline Background study and problem identification Literature review Research proposal development Design of experiments Methodology development and experimental work/modeling and simulation Data analysis and interpretation Reporting and publication of results 	-	6	3.0	None	100	0
After completing this module, student should be able to: • LO1: Review literature critically and identify research gaps/problem. • LO2: Develop new experimental set ups/ models/strategies. • LO3: Develop creative thinking and self-integrity under challenging environment. • LO4: Analyze experimental/modelling results and draw conclusions. • LO5: Produce research findings as a publishable material. Syllabus Outline Background study and problem identification Literature review Research proposal development Design of experiments Methodology development and experimental work/modeling and simulation Data analysis and interpretation Reporting and publication of results	Learning O	utcomes				
Reporting and publication of results	After compl • • • • • • • • • • • • •	eting this modu LO1: <i>Review</i> li LO2: <i>Develop</i> i LO3: <i>Develop</i> i LO3: <i>Produce</i> itline ind study and re review proposal deve rexperiments logy developm lysis and inter	ent and experiment pretation	e able to: nd identify research gaps/problem. et ups/ models/strategies. d self-integrity under challenging ling results and draw conclusions. a publishable material. tion tal work/modeling and simulati	environmer	ot.
	Reporting	g and publicat	ion of results			

Semester	Code		Module Title	C/E/O	GPA / NGPA		
6	CH3170	La	aboratory Practices III	С	GPA		
Hours	s/Week	C l'tr			Evaluation		ation %
Lecture	Lab/Tutes	Creans	Prerequisites / Corequisites	CA	WE		
-	6	3.0	CH1051, CH2170, CH2270,	100	0		
			CH2210, CH3045, CH3055,				
			CH4045				

Learning Outcomes

After completing this module, the student should be able to,

- LO1: *Develop* detailed drawings of process equipment.
- LO2: Construct P&I diagrams for chemical equipment and processes.
- LO3: Analyse chemical processes using process simulation tools.
- LO4: *Develop* numerical models of a process and build computer models for simulations by using computer aided tools.
- LO5: *Employ* advanced concepts and techniques relevant to applications in chemical and process engineering.
- LO6: *Apply* appropriate methods to plot, analyse and present experimental results, and verify principles when applicable.

Syllabus Outline

Laboratory Practices III module covers the application and design aspects in Chemical and Process Engineering (CH1051, CH2210, CH3045, CH3055, and CH4045) and provides in-depth learning for engineering drawing and advanced computer aided chemical engineering.

Engineering Drawing and Computer Aided Learning.

Detailed drawing of process equipment with auxiliaries (assembly drawing) using SOLIDWORKS®. Development of P&ID using suitable software packages.

Advanced process analysis tools in Aspen Plus® (design specifications, calculator blocks, sensitivity analysis, optimization tools).

Challenge based project work.

Development of a numerical model of given process and analyse system dynamics by simulations. Develop suitable control structure to tight control of quality parameters and eliminate disturbances. Development of SIMULINK® and LabVIEW models to simulate the control structure to understand control behaviour.

Laboratory Experiments (8 Sessions).

(1) Rankine cycle, Steam analysis. (2) Corrosion (3) Identification of Polymers (4) Determination of properties of petroleum (flash point, fire point, aniline point, etc.). (5) COD, TS, TDS, TSS, and VSS of wastewater. (6) Determination of DO, residual chlorine, alkalinity, and pH. (7) Tuning PID controller for air heater (8) Introduction of ladder programming to control process engineering applications by PLC.

Semester VII

Semester	Code		Module Title	C/E/O	GPA / NGPA					
7	CH4016	Compre	chensive Design Project I	С	GPA					
Hours	s/Week	Credita	Propagnicitas / Concentration	Evalu	ation %					
Lecture	Lab/Tutes	Creans	Prerequisites / Corequisites	CA	WE					
-	8	4.0	None	100	0					
Learning	Learning Outcomes									
	LO1: Develo LO2: Conduc LO3: Apply o LO4: Develo LO5: Perforn LO6: Develo	p complex design ct a design project chemical synthesis p process flow dia n sustainability ar p skills on teamw	with a significant degree of engine s and process synthesis techniques agram and perform mass and energy nalysis for a process plant ork, technical reporting, and preser	eering compe y balance ntation	tence					
Syllabus C Market Ai	Outline									
Determine	the suitable pl	ant capacity								
Chemical	Synthesis of t	he process:								
Select the c	chemical pathy	vay based on gros	s profits using bulk material prices							
Process Sy	nthesis:									
Identify the temperature	e design tasks e, pressure, co	and the major un mposition, and ph	ase ase	to eliminate 1	the changes in					
Process flo	w diagram:	ntegrated unit one	rations ensuring energy recovery	develop the p	rocess flow					
diagram	ne tasks with i	niegrateu unit ope	rations ensuring energy recovery,	develop life p	iocess now					
Material a Select the u Material ar Sustainabi Environme Social Sus HAZOP) Economic i Site selecti Site selecti	 Sequence the tasks with integrated unit operations ensuring energy recovery, develop the process now diagram Material and Energy Balance: Select the unit basis and the system boundary, Detailed material and energy balance for the process, Material and Energy flowsheet Sustainability Assessment of the process: Environmental Sustainability: Top level Environmental impacts assessment, Leopold Matrix Social Sustainability: Risk Assessment (e.g., Fault-tree analysis), Safety and Health Assessment (e.g., HAZOP) Economic Sustainability: Cost-benefit analysis Site selection and Plant layout: Site selection: Based on Raw materials, Land, Transportation, Labor, Infrastructure facilities, Utilities, 									
Plant layou	it development	t and Environme	an, Sustainaointy requirements							
	1									

Semester	Code		Module Title	C/E/O	GPA / NGPA				
7	CH4120	Biof	uels and Biorefineries	Е	GPA				
Hour	s/Week	C! '4.	D	Evalu	ation %				
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE				
2	2	3.0	CH1061, CH4501	40	60				
Learning	Learning Outcomes								
After comp	oleting this mo	dule, the student s	hould be able to,						
•	LO1: Unders	tand the basic cor	cepts of biofuels and biorefinery.						
•	LO2: Recogn	uize the applicabili	ty of chemical, biological and phys	ical process to	echnologies				
	in conversior	of biomass to bio	ofuels and value-added chemicals.						
•	LO3: Compa	re technical and e	conomic feasibilities among techno	logies.					
•	LO4: Select s	suitable technolog	ies of trending biomass to biofuel/b	iochemicals o	or				
	biomaterials	conversions.							
•	LO5: Apprai	se suitable modula	ar process systems for selected conv	version techno	ologies.				
•	LO6: Design	modular process	systems for biorefinery.						
Syllabus C	Outline								
Introducti	on								
Definition,	objective of b	iorefinery, feedsto	ock classification, and composition,	product rang	ge – Biofuels,				
Biomateria	ls, Biopolyme	rs, platform chemi	icals and speciality chemicals, limit	ations, and in	npacts.				
Assessmen	t on site-speci	fic feedstock avail	ability and identify potentials amon	g different bi	omasses.				
Feedstock	for biorefine	y							
Physical a	nd Thermoch	emical processes	in biorefinery						
Mechanica	l crushing, Ult	rasound treatment	t, Microwave treatment, Liquefaction	on, Torrefaction	on, Pyrolysis,				
and Gasific	cation		<i>(</i> **						
Cnemical a	and Biologica	I processes in bio	reinery	-1.:					
Character	nal, Acid, and	alkall pre-treatme	ents/Catalysis /Hydrotreating/Anaero	obic reactions	5				
Calorific y	alues fuel spe	per des or biorder	s ties of blends						
Character	ization of oth	er products	ties of blends						
Matching h	iochemicals a	nd biomaterials fo	r industries						
Techno-ec	onomic anal	vsis of technol	ogies, processes, and product	range of	biorefinery.				
Environm	Environmental management of biorefineries								
Selection o	of feasible tecl	nologies, proces	ses, and product range for Sri La	nkan scenari	0:				
Case-based	Case-based unit								
Design and	Design and Simulation of modular process systems								

Semester	Code]	Module Title	C/E/O	GPA /						
7	CH4130	Proc	cess Optimization	Е	GPA						
Hours	Hours/Wook			Fvalue	ation %						
Lecture	Lab/Tutes	Credits	Credits Prerequisites / Corequisites CA								
2	2	3.0	CS1033, MA2014, MA3024,	40	60						
			CH3034, CH4045, CH2180,								
			CH1044, CH2015, CH4501								
Learning Ou	Learning Outcomes										
After comple	Ol Deservite at	e, students should be	able to,								
	O1: Describe u	d optimization theory	and methods								
	O2: Understand O3: Identify tec	hpiques of optimization	tion and translates these concepts	into compu	itational						
n	nethods and algo	orithms	tion and translates these concepts	into compu	lational						
• I	.04: Construct	process engineering	models for optimization								
• I	O5: Formulatic	<i>n</i> of the objective fu	inctions								
• L	.06: Apply optim	nization techniques	to chemical and process engineeri	ng							
Syllabus Out	tline										
Formulating	the problem										
the nature and	l organization of	f optimization proble	ms, Scope and Hierarchy of Optin	nization, Th	e Essential						
Features of O	ptimization Pro	blems.									
Developing r	nodels for opti	mization									
Classification	of Models, Deg	grees of Freedom, In	equality and Equality Constraints	in Models.							
Formulation	of the objectiv	e function		см ·	01.						
Economic Of	assures of Profi	ns, Efficiency Object	cuve function, The Time value of	n money in	Objective						
Ontimization	theory and m	ethods									
Basic concer	ts of optimizati	ion: Continuity of F	Functions, NLP Problem Stateme	nt. Convex	tity and Its						
Applications,	Interpretation c	of the Objective Fund	ction in Terms of Its Quadratic.	,							
Optimization	of unconstraine	ed functions: one-dir	nensional search, Numerical Met	hods for Op	ptimizing a						
Function of C	One Variable, So	canning and Bracket	ing Procedures, Newton and Quas	si-Newton I	Methods of						
Unidimension	nal Search, Poly	nomial Approximati	on Methods.								
Unconstraine	d multivariable	optimization: Metho	ds Using Function Values Only, N	lethods Tha	at Use First						
Linear progra	ewton's Method	d applications: Geo	metry of Linear Programs Basic	I inear Pro	arammina						
Definitions a	nd Results. Simi	plex Algorithm, Sens	sitivity Analysis		Jgranning						
Nonlinear pr	ogramming wit	h constraints: Direc	t substitution. First-Order Neces	sarv Condi	tions for a						
Local Extrer	num, Quadratio	c Programming, Pe	nalty Barrier and Augmented	Lagrangian	Methods,						
Successive L	inear Programm	ing, The Generalize	d Reduced Gradient Method, Re	lative Adva	intages and						
Disadvantages of NLP Methods											
Mixed-integer programming: Branch-and-Bound Methods Using LP Relaxations, Solving MINLP											
Problems Using Branch-and-Bound Methods, Solving MINLPs Using Outer Approximation.											
Methods for 0	Giobal Optimization for problems with continuous and discrete variables Methods for Global Optimization, Multi-start Methods, Heuristic Search Methods, Consticutional accrition										
Case studies	oroom optimize	aion, muni-sunt Mic	alous, ficulture bearen wiedlous,	Senetic dig							
Applications	of optimization	on, Optimization of	of Heat transfer and energy of	conservation	n process,						
Optimization	of Separation p	rocesses, Optimizati	on of Chemical reactor design and	d operation.	• *						

Semester Code		Module Title	C/E/O	GPA / NGPA			
7 CH4140		Biotechnology		GPA			
Hours/Week	C l'An		Evalu	ation %			
Lecture Lab/Tute	s Credits	Prerequisites / Corequisites	CA	WE			
2 2	3.0	None	40	60			
		Learning Outcomes					
Learning Outcomes After completing this module, the student should be able to: • LO1: Appraise the impact of biotechnology in society • LO2: Discuss and differentiate biotechnology, bionanotechnology, and nanobiotechnology • LO3: Demonstrate comprehensive knowledge and interdisciplinary skills in the field of biotechnology for synthesis of bioproducts and assessment of product quality • LO4: Categorize and use techniques utilized to engineer cells and organisms for biotechnological applications • LO5: Design and develop products and processes for medical and industrial applications using knowledge and transferable skills in biotechnology • LO6: Evaluate the applicability of biotechnology to provide sustainable solutions for contemporary issues in science							
 contemporary issues in science Syllabus Outline Engineering cells and organisms for bioprocesses: Bio-based products and industries, cellular bioprocesses, DNA, gene expression, protein synthesis, recombinant DNA technology, mutagenesis, antisense technology, OMICS, bioinformatics Enzyme technology: Isolation and purification of enzymes, enzymes in medical applications, enzymes in process industries, immobilized enzymes Biopharmaceuticals: Introduction to pharmaceutics and pharmacology, biopharmaceuticals, fundamental bioprocesses and new technologies, economics of biomanufacturing pharmaceuticals, regulation and quality approaches, supply chain integrity of pharmaceuticals Future medicine: Drug delivery and therapeutics: Conventional medical devices, drug delivery, mechanical/electric-based and biological/cell-based therapies, gene therapy, and tissue engineering Bionolecules for human use/consumption: Biotechnologiz in production of flavours, nutraceutical production Analytical techniques in biotechnology: Quantitative and qualitative analysis of bioproducts, analytical techniques and instrumentation for product analysis of biochemical/biological processes and metabolic activities Biosensors and bioprocess control: Biosensors in medical applications, pathogen detection, biosensors in bioremediation Vaccines and vaccine development pathways: Viruses, pandemics and immunity, history of infectious diseases, basics of virology, immunology, and epidemiology, development of diagnostic tests, vaccines, and antiviral therapies 							

Semester	Code		Module Title	C/E/O	GPA / NGPA			
7	CH4160	Process	Chemicals Management	Е	GPA			
Hours	s/Week	Creadita	Processisites / Companyisites	Evalua	ation %			
Lecture	Lab/Tutes	Creatts	Prerequisites / Corequisites	CA	WE			
2	2	3.0	CH1071, CH4501, CH3045	40	60			
Learning (Outcomes			•				
Syllabus O	 LO1: Understand the Importance of chemicals management in chemical and process industries. LO2: Recognize the national and international regulations on chemicals management. LO3: Select and apply the suitable chemicals management concepts, guidelines, and tools. LO4: Demonstrate the ability to develop a suitable chemicals management system for a process industry. LO5: Discuss the principals of green chemistry and its benefits. LO6: Apply the principles of green chemistry for process industry. 							
Importance National a Chemicals Main steps Technique Chemical I Applicatio	e of chemical nd internatio management s of lifecycle o s for chemica labelling syste ns of green cl	s management fo nal regulations o t concepts and to of chemicals I waste managen ems nemistry principa	or the chemical and process indust n chemicals management ols nent and disposal als	tries				
Case studies of green chemistry								

Semester	Code		Module Title	C/E/O	GPA / NGPA			
7	CH4371	Petrole	um Trade and Economics	Е	GPA			
Hour	s/Week	Carlita	Description (Constitution	Evalua	ation %			
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE			
2	2	3.0	None	30	70			
Learning	Outcomes							
After comp	 After completing this module, the students should be able to, LO1: <i>Describe</i> economic perspectives of Oil and Gas Industry. LO2: <i>Evaluate</i> oil supply and demand and its effect on the industry. LO3: <i>Analyze</i> Transport, Processing and Sales Costs of Petroleum Processing. LO4: <i>Describe</i> trade practices pertaining to Petroleum Operations. LO5: <i>Select</i> best financial instruments for purchasing petroleum crude oil and diversifying product portfolio. LO6: <i>Design</i> operational procedures for techno-economic feasible operations in Petroleum Processing fooilities. 							
Syllabus C	Dutline							
Introducti A historica Oil and Ga Internatio Exploratio Effects of Economic Financial i Techno-ec	Syllabus Outline Introduction A historical Perspective and present Oil and Gas Industry Overview Oil and Gas Industry Markets International standards, guidelines and directives related to oil and gas industry Including Exploration & Production Effects of Regional Politics and Activities towards Petroleum Industry Economic Trends in Petroleum Industry Financial instruments used in Petroleum Industry Techno-economic feasible operations in Petroleum Industry							

Semester	Code		Module Title C/E/O GF					
7	CH4410	Р	olymeric Materials	Е	GPA			
Hours	s/Week	~ ~		Evalua	ation %			
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE			
2	2	3.0	CH2210	30	70			
Learning	Outcomes							
After comp	 After completing bittering of the most suitable polymer/s for a given application. LO1: <i>Identify</i> the most suitable polymer/s for a given application. LO2: <i>Suggest</i> suitable analytical technique/s for identification of a polymer material or a product. LO3: <i>Select</i> reinforcing materials for a polymer composite. LO4: <i>Find</i> solutions to control the degradation of polymers. LO5: <i>Explain</i> the importance of using polymer blends and composites over a single polymer for specific applications. LO6: <i>Discuss</i> the importance of advanced materials used for selected applications. 							
Overview	of Polymeric	Matarials						
Elastomers Polymer la Polymers i Food, phar	, plastics, fibre attices (natura in packaging i maceutical, co	es, thermoplastic e al and synthetic) industry: smetic, electrical	elastomers, lattices, and their uses and characterization techniques appliances					
Polymers	used in bioma	terials						
Polymer B Engineerii High tempo Matrix ma Advanced crystalline Biodegrad Nylon 6, Pe Degradation Analysis o spectroscop	Food, pharmaceutical, cosmetic, electrical appliances Polymers used in biomaterials Polymer nanocomposites Polymer Blends and alloys Engineering Polymers: High temperature polymers and high strength polymers Matrix materials and reinforcing materials used in polymer composites Advanced polymeric materials (conductive polymers, responsive polymers, hydrogels, liquid crystalline polymers) Biodegradable polymers and their applications: poly (glycolic acid), poly(lactic acid), Nylon 2- Nylon 6, Polyhydroxybutyrate, polydioxanone (PDO) Degradation and stabilization of polymers: Thermal degradation, photo degradation, oxidative degradation, ozone degradation and biodegradation Analysis of polymeric materials: IR spectroscopy, UV spectroscopy, Nuclear magnetic resonance							

STUDENT HANDBOOK 2021 INTAKE

Semester	Code		Module Title	C/E/O	GPA / NGPA			
7	CH4026	Process	Modelling and Simulation	Е	GPA			
Hour	s/Week	Credita	Proposizion / Coroquisitos	Evalu	ation %			
Lecture	Lab/Tutes	Creatis	Frerequisites / Corequisites	CA	WE			
2	2	3.0	CS1033, MA2014, MA3024, CH3034, CH4045, CH2180, CH1044, CH2015, CH4501	40	60			
Learning	Outcomes							
After comp	bleting this mo LO1: Descrit LO2: Identify LO3: Constri LO4: Evalua LO5: Develo by using com LO6: Analyze	dule, students sho be systems and mo process paramete <i>uct</i> state space mo <i>te</i> dynamics of the <i>p</i> numerical mode uputer aided tools <i>e</i> processes by usi	uld be able to: odels, main elements of dynamic mo ers to develop a mathematical mode odels and linearize non-linear system e systems and processes. els of a process and build up comput (Python/MATLAB/SIMULINK). ng simulation studies.	odelling. el of a system. ns. ter models for	- simulations			
Syllabus C	Outline							
Main elem Parameter Empirical Introduces Momentum Linearizat The State-S of the Gene Multiphas Packed Bee Unsteady-S Nonlinear Generaliza Nonlinear Diagrams, Artificial M Engineerin Model Val Model Val Measures, Case Stud	 Syllabus Outline System and Model: Main elements of Modelling of Dynamic Systems, General Form of Dynamic Models, Lumped Parameter Systems, Material and Energy Balances Empirical model building: Introduces Multi variable Model Identification, Theory and Applications of Distributed Systems for Momentum, Thermal and Diffusion processes Linearization of the nonlinear Models: The State-Space Formulation, Interpretation of Linearization, Solution of the Zero-Input Form, Solution of the General State-Space Form Multiphase Systems with and without reactions: Packed Bed Reactors, 1D and 2D Pseudo-Homogeneous Model, 1D and 2D Heterogeneous Model, Unsteady-State or Dynamic Models Nonlinear systems analysis: Generalization of Phase-Plane Behaviour, Nonlinear Systems- limit cycle behaviour. Introduction to Nonlinear Dynamics, A Simple Population Growth Model, A More Realistic Population Model, Cobweb Diagrams, Bifurcation and Orbit Diagrams Artificial Neural Network-Based Models: Artificial Neural Networks, Development of ANN-Based Models, Applications of ANNs in Chemical Engineering Model Validation and Sensitivity Analysis, Direct Differential Method, Global Sensitivity Mnanyee, Struction and Oteps, Sensitivity Analysis, Direct Differential Method, Global Sensitivity 							

Semester	Code		Module Title C/E/O GP/					
7	CH4420	Waste Minimi	zation and Resources Recovery	Е	GPA			
Hours	s/Week	Credite	Proroquisitos / Coroquisitos	Evalu	ation %			
Lecture	Lab/Tutes	Creuits	Frerequisites / Corequisites	CA	WE			
2	2	3.0	CH3045	30	70			
Learning	Outcomes							
• • • • •	 After completing this module, student should be able to: LO1: <i>Describe</i> waste management concepts relevant to the process industry. LO2: <i>Assess</i> cleaner production in the process industry. LO3: <i>Identify</i> source reduction and waste minimization opportunities and apply for waste management improvement of processes. LO4: <i>Select</i> resource recovery, recycling, and reuse techniques for waste. LO5: <i>Apply</i> process integration solutions for optimization of water consumption in the process industry. LO6: <i>Describe</i> circular economy theories and concepts in the process industry. LO7: <i>Analyze</i> existing and new processes for waste minimization, resources recovery and good manufacturing practices and waste management principles. 							
Syllabus C	Outline							
Introducti Extended p pays princip 5R Princip Source Re Resources Recycling Incineration Process int Water pinc Concept of Good Man Introducti Case Studi	on to Waste M producer respon- ple, Resources le (Refuse, Red duction and V recovery from and Reuse n, Engineered tegration solu h calculations f Cleaner Pro oufacturing Pro outfacturing Pro on to Circular ies for waste r	Management Con nsibility, Product s recovery, Waste n duce, Reuse, Repu Waste Minimizati n waste techniques, Mate landfilling. tions for waste a and water networ duction and Clea ractices (GMP) r Economy and I ninimization and	acepts stewardship, Muda (Japanese term) management hierarchy, 3R principle irpose, Recycle), Waste-to-energy, ion erials Recovery Facility (MRF) voidance k design. mer Production Assessment ndustrial symbiosis I resources recovery	, Pay as you t e (Reduce, Re Zero waste.	hrow, Polluter euse, Recycle), ng, Pyrolysis,			

STUDENT HANDBOOK 2021 INTAKE

Semester	Code		Module Title	C/E/O	GPA / NGPA		
7	CH4430	Industrial Che	emical Manufacturing Processes	Е	GPA		
Hours	s/Week	Crudita	Promo anticitas / Como anticitas	Evalu	ation %		
Lecture	Lab/Tutes	Creatts	Prerequisites / Corequisites	CA	WE		
2	2	3.0	None	40	60		
Learning (Outcomes						
After comp	leting this mo	dule, the student s	should be able to,				
•	LO1: Unders	stand the production	on of chemicals and role in society				
•	LO2: Identify	v the Global Chem	nical Process Industry				
•	LO3: Define	different Chemica	al Manufacturing Processes				
•	LO4: Illustra	<i>te</i> product value o	chains (Global and local value chain	s)			
•	LO5: Determ	<i>ine</i> Techno-econo	omics of Chemical Manufacture	~)			
•	LOG: Assess	Environmental M	anagement concepts of Chemicals N	Manufacture			
	200.1155055		anagement concepts of chemicals i	illiuracture			
Syllabus O	outline						
Introduc	tion to Globa	l Chemical Proc	ess Industry (CPI)				
Chemica	ls and their r	ole in society					
Inorgani	c chemicals n	nanufacture					
Phosphor	ous, Phosphat	es and Fertilizers					
Sea base	d chemicals						
Salt, Chlo	or – Alkali and	l Related Heavy C	Chemicals				
Industria	al Gases and S	Speciality gases					
Industria	al Acids						
Sulphuric	e, Hydrochlori	c, Nitric, HF					
Organic	Chemicals M	anufacture					
Specialit	y fine chemic	al manufacture					
Pharmace	euticals						
Oleocher	Oleochemicals						
Soap, fatt	ty acids, and s	ynthetic chemical	S				
Natural j	Natural products manufacture						
Dairy pr	Dairy products manufacture						
Tecnno e	Techno economics of process operations in chemicals manufacture						
Environ	mentai Manag	gement aspects of	i chemicais manufacture				

Semester	Code		Module Title	C/E/O	GPA / NGPA			
7	CH4235	Polyme	er Processing Operations	Е	GPA			
Hours	s/Week	Credita	Pronomigitas / Conomigitas	Evalu	ation %			
Lecture	Lab/Tutes	Creans	Prerequisites / Corequisites	CA	WE			
2	2	3.0	None	30	70			
Learning Outcomes								
 Learning Outcomes After completing this module, students should be able to LO1: <i>Identify and describe</i> the polymer processing operations related to rubber and plastic processing. LO2: <i>Discuss</i> the influence and importance of processing parameters on polymer processing operations. LO3: <i>Apply</i> rheological and heat transfer principles to optimize the polymer processing operations. LO4: <i>Recognize</i> the machineries used in polymer processing. LO5: <i>Analyze</i> products defects that can be appeared during respective polymer processing operations. LO6: <i>Demonstrate</i> the ability to select the most appropriate processing technique(s) for a desired polymer product to manufacture. 								
Syllabus C	Outline							
Polymers a Polymer R Non-Newtt rheological Heat transfe Concentra extrusion) Manufactu Mixing an Shaping/fo Moulding I moulding, Curing teo Batch and o New trend 3D printing	and their ther theology and bonian behaviou properties. der in Polyme uation of cond er applications tion of latex; are of differer d compoundin processes: Con Blow mouldin chniques continuous cur perations, pro s in polymer	mai transitions Processing chara ir of polymer melt er systems uction; Steady and Products manufa ing technologies. ques for rubbers npression mouldin g; Extrusion and G ring processes. ocess variables an products manufa	cteristics ts; Processing characteristics: Visco d unsteady state heat conduction, co acturing techniques (dipping, casti rubber. and plastics ng, Transfer moulding, Injection mo Calendaring and their effects on product quality acturing	sity, melt flow nvection, and ng, foaming, ulding, React	w, l radiation spraying, ion injection			

Semester	Code		Module Title	C/E/O	GPA / NGPA		
7	CH3253	Enviro	nmental Bioengineering	Е	GPA		
Hours	s/Week	Crudita	Promo anticita a / Como anticita a	Evalu	ation %		
Lecture	Lab/Tutes	Creatts	Prerequisites / Corequisites	CA	WE		
2	2	3.0	None	30	70		
Learning	Outcomes						
After completing this module, student should be able to, • LO1: Understand basic principles of biological wastewater treatment. • LO2: Explain the microbial conversion processes and operating parameters. • LO3: Describe microorganisms according to energy source and carbon source. • LO4: Evaluate biological systems by applying microbial kinetics. • LO5: Develop mathematical models and simulate bioreactors.							
Syllabus O	outline						
Classificat Based on m Microbial Biomass gr Biological Identification Types of b Bioreactor Introduction Mass and e reactions. Bioprocess Modelling Environmed	ion of microo netabolic funct growth kineti owth rate; rate wastewater th on of constitue n, denitrificatio ioreactors and classification a on to bio proo nergy balance s modelling to and simulatior ental Bioengin wased case stud	rganisms ion. cs e equations. reatment princip ents in wastewater on and phosphorus d activated sludg and their functions cess modelling for bio reactors, c ols n using related sof meering Case Stu- lies.	les and basic parameters; aerobic and s removal. e process s; Activated sludge process. lesign equation derivation; process tware tools. dies	anaerobic pr matrix; balar	ocess; nce growth		

Semester	Code		Module Title	C/E/O	GPA / NGPA		
7	CH4440	Petroche	emical Process Operations	Е	GPA		
Hours	s/Week	Cardita	Processi sites / Companyi sites	Evalua	ation %		
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE		
2	2	3	None	30	70		
Learning (Outcomes						
After comp	leting this mo	dule, the student s	should be able to,				
•	LO1: Descrit	be key operations	in petrochemical processes.				
•	LO2: Demon	strate petrochemi	cal conversion pathways.				
•	LO3: Analys	e petrochemical co	onversion technologies.				
•	LO4: Apply	petrochemical con	version technologies to petroleum re	esources and	economy in		
	Sri Lanka.						
•	LO5: Design	and evaluate of a	process flow diagram for petrocher	nical conversi	ion		
	process.						
Syllabus O	outline						
Introducti	on to petroch	emical industry					
A brief or	verview of p	etrochemical tech	hnologies and discuss upon the	general topo	ology of the		
petrochemi	cal process teo	chnologies.					
Resource i	dentification	and evaluate pot	entials in Sri Lanka				
Evaluating	the unique po	sition Sri Lanka c	furrently in the petrochemical indust	try, especially	⁷ Hambantota		
is becoming	g a petroleum	processing zone.					
Petrocnen	nical conversi	on pathways					
Discuss the	chemistry be	nind the major co	nversion options used in industry a	nd discuss no	ver strategies		
to maximiz	e economical	gains.					
Discuss pro	ical processi	ig paulways	bahind the major conversion process	as including	pro trootmont		
processes of	Discuss process engineering fundamentals behind the major conversion processes including pre-treatment						
	ly on design (and simulation of	a netrochemical conversion proc	Prants. PSS			
A selected	A case surup on design and simulation of a petrochemical conversion process						
mitigation	of environmen	tal and health risk	involved.	operating pu	und und		

Semester	Code		Module Title		GPA / NGPA			
7	CH4285	Food Safety and Hygienic Plant Design		Е	GPA			
Hours	s/Week	Crudita	Promo anticitas / Como anticitas	Evalu	ation %			
Lecture	Lab/Tutes	Creatis	Prerequisites / Corequisites	CA	WE			
2	2	3.0	None	40	60			
Learning (Outcomes							
After comp	leting this mo	dule, the student s	should be able to:					
Syllabus (LO1: <i>Develop</i> an awareness on the modern food chain. LO2: <i>Identify</i> food hazards and necessary control mechanisms to improve hygienic food manufacturing. LO3: <i>Understand</i> the regulatory requirements for hygienically design processes. LO4: <i>Design</i> plants and equipment in compliance with standards and guidelines for hygienic design. LO5: <i>Evaluate</i> food safety management systems and recommend the preventive measures. 							
Introducti	on:							
Food safety Supply cha Risks-Orig Food hazar methods, an	/ key concepts ins in the food gin and Natur rds-biological, nd control med	(hazard, risk, hyg l industry-bottlene e: chemical, and pl chanisms	iene); Evolution of hygiene in food ecks and issues hysical: prevalence, characteristics,	plant design a contemporar	nd operation; y monitoring			

Hygienic Building Design Essentials:

General design issues for factory interiors; Site selection and plant layout; Significance in segregation/zoning; Hygienic design of walls, ceilings, and floors; Hygienic design of selected fixtures, utility systems and process support systems; Control of air borne contamination (source and control systems)

Hygienic Equipment Design Essentials:

Key criteria in hygienic equipment design: risk assessment and regulatory requirements; Hygienic design of different types of equipment (closed, heating, dry matter handling, electrical, packaging, piping systems, seals, valves, pumps, etc.)- construction materials, minimum design essentials, cleaning regimes, improved hygienic control by sensors, and future trends

Hygienic Plant Operations I-Verification and certification of hygienic food processing plants:

HACCP: HACCP steps, identification of potential hazards, identify CCP, establish CCP, establish monitoring procedures, establish corrective actions, record keeping procedures, verification; other quality systems (ISO 22000)

Hygienic Plant Operations II-Good manufacturing practices (GMP):

Effective manufacturing operations and risk control; Use of standard operating procedures (SOPs); Managing risks (allergenic residue, insects, personal hygiene, food transportation); Cleaning, Disinfection, and Sanitation [Cleaning kinetics and mechanisms; Cleaning of raw material, plants, and equipment (CIP and COP), packaging, odour abatement; enzymatic cleaning]

Semester VIII

Semester	Code		Module Title	C/E/O	GPA / NGPA			
8	CH4035	Compre	Comprehensive Design Project II C					
Hour	s/Week	a 1 ¹	D	Eval	uation %			
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE			
-	10	5.0	CH4016	100	0			
Learning	Outcomes							
After comp	Learning Outcomes After completing this module, student should be able to: • LO1: Appraise key decisions to be made and relevant assessment criteria for equipment selection • LO2: Design a selected process equipment in detail, including chemical, mechanical and operational aspects • LO3: Identify the type of material and method of fabrication suitable for the equipment. • LO4: Select control schemes and instrumentation. • LO5: Describe the startup, shut down, operational, and maintenance procedure. • LO6: Analyze safety and economic aspects of the equipment. • LO7: Develop technical report writing and drawing skills.							
Syllabus C Chemical Introductio	Dutline Design on of design pr	roblem including	the design duty and design constr	raints; Revie	w of alternative			
options for required fo	selecting the solution reprint the solution of the selecting the selecti	suitable process ed	quipment; Chemical design calcula process safety.	ations; Desig	in specifications			

Mechanical Design, Process Control, and Process Instrumentation

Mechanical design calculations of major unit, accessories and supports; Mechanical drawings of major unit and components; Design of the control structure for the process unit; P & I diagram and Specifications of required instruments.

Process safety, Operation, and Costing

Conduct hazard and operability study (HAZOP) and identify and analyze problems that may represent hazards to personnel or equipment; Devise startup – shutdown procedure, maintenance schedule and troubleshooting plan; Costing of the complete unit including instrumentation.

Semester	Code		Module Title C/E/O GPA / NGPA						
8	CH4275	Polymer Produ	cts Manufacturing Technologies	Е	GPA				
Hours	s/Week	Cruedite	Decementation / Communicities	Evalua	ation %				
Lecture	Lab/Tutes	Creatts	Prerequisites / Corequisites	CA	WE				
2	2	3.0	CH4235, CH4410	40	60				
Learning (Outcomes								
After comp	leting this mo	dule, students sho	uld be able to,						
•	• LO1: <i>Identify</i> the components in an industrial rubber product to satisfy service requirements.								
•	LO2: Apply I	knowledge gain of	n polymer technology to optimize th	ne manufactur	re of polymer				
	products.								
•	LO3: Unders	stand the manufac	turing technologies used in polymer	r industry.					
•	LO4: Assess	the properties of p	polymer products and to demonstrat	e testing proc	edures.				
•	LO5: Recom	mend recycling te	chnologies to minimize pollution du	ie to polymer	waste.				
•	LO6: Apply t	he knowledge to 1	maintain the required quality of pro-	ducts.					
Syllabus O	utline	-							
Features a	nd assemblies	s of commodity a	nd engineering rubber products						
(tyres, hose	es and tubing, b	pelts, sheaths, foot	wear, bearings, mounts, gaskets and	seals, floorin	g and roofing				
products, et	tc.).								
Additives	used in polym	er products man	ufacturing						
Importance	, functions, a	nd limitations of,	fillers, vulcanizing systems, proce	essing aids, e	extenders and				
diluents, pr	otective agent	s, dyes and pigme	nts and speciality additives.						
Manufactu	iring technolo	ogies used in pne	umatic and solid tyres						
Manufactu	iring technolo	ogies of gloves, fo	am and cast products						
Fibre man	ufacturing te	chnologies							
Manufactu	ire of extrusio	on-based product	ts and moulded						
Other Mai	nufacturing to	echnologies							
Thermoform	ming and vacu	um forming.							
Manufactur	ring technolog	ies of polymer co	mposites.						
Recycling	and upcycling	g technologies.							
Quality as	surance aspec	cts in polymer pr	oducts manufacturing						
Product te	sting and Cha	aracterization							
Physical, cl	hemical, thern	nal, electrical solu	tion, and weathering properties						

<i>a</i>	<i>a</i> 1			G 77 10	GPA /
Semester	Code		Module Title	C/E/O	NGPA
8	CH4742	Polymer	Products and Tool Design	Е	GPA
Hours/	Week	Credita	D rangquigitag / Consquigitag	Evalu	ation %
Lecture	Lab/Tutes	Creatis	Prerequisites / Corequisites	CA	WE
2	2	3.0	CH4410	40	60
Learning O	utcomes				
2 Learning O After completion After completion After completion State of the test of	2 utcomes eting this model LO1: Identify and tools. LO2: Identify environments LO3: Descrit products. LO4: Design LO6: Recogn products. LO6: Recogn products. titline sticity and vi equirements of icture, Strain n principle, behaviour, Ei formation a es, Fracture Polymers, Fat ibber productor ctors conside rubber productor astic productor oraching met ith plastics for naly	3.0 dule, students sho p the important en p failure mechanis s. be assembly techr of simple engine simple injection t <i>ize</i> the software u scoelastic proper of rubber-like ela -induced crystalli Stress-relaxation ffects of molecula nd Failure mech Modes, Fracture ' igue Curves for F cts red on designing cts, basic calculat ts	CH4410 Puld be able to, gineering principles applicable to de sms of polymer products used under hiques required for designing and ma ering polymer products. mould/die to manufacture polymer p used for design and fabrication of me rties asticity, Force as a function of defe- ization, Boltzmann superposition pro- n and creep, Dynamic mechanica r structure on viscoelasticity. anics Toughness, Stress Concentrators (F Polymers. of rubber products, Features and ass- ion on designing of simple engineer ponsiderations for designing injection erties, design of plastic product s for	40 40 esign of polyr different serv anufacturing of product. oulds for poly ormation, ten rinciple, Time al behaviour Flaws), Crack semblies of co ring rubber pr on moulded r mechanical	60 mer products //ice of polymer /mer /mer /mer /mer /mer /mer /mer /
Design of In	iection Mon	lds			
Jesign of In Standard mo Runner less system and v Design of ex operating po Design of ex and non-circ Computer a Computer A Simulation M	yection Mou buld parts, tw Moulding. I venting system (trusion dies structional fe int, head prese truder dies fo ular solid pro- (ided design Moldflow®, p	yo plate mould to Design Checklist, n, Design of core eatures of Split, the ssure and total volor extrusion of ho ofiles. analysis and fab Analysis and Fabri plastic injection m	ool, multiplate tool system, Underc Design of feed system, Design of and cavity, Mould making Techniq nreaded, integer and plate dies, Die lumetric flow rate from extruder-die llow profiles; slit dies for flat film a rication of moulds ication of Moulds: Solidworks® mon noulding simulation software, Com	tut Injection I Ejector Syst Jues, Mould M and screw cl e combination nd sheet extru uld tool design puter-aided n	Mould Tools, em, Cooling faterials. haracteristics, , ision, circular n, Autodesk® nanufacturing

Semester	Code	Module Title		C/E/O	GPA / NGPA	
8	CH4450	Ene	Energy Storage Systems		GPA	
Hours	s/Week	Credita	D ronoguigitos / Conoguigitos	Evaluation %		
Lecture	Lab/Tutes	Creans	Frerequisites / Corequisites	CA	WE	
2	2	3.0	CH1051, CH2631, CH1044	40	60	
Learning Outcomes						

After completing this module, the student should be able to,

- LO1: *Identify* available energy storage technologies
- LO2: Assess the demand of energy storage for embedded generation
- LO3: *Apply* suitable energy storage technologies
- LO4: Assess the economic viability and conversion efficiencies of different energy storage technologies
- LO5: *Design* energy storage systems

Syllabus Outline

Introduction

Overview of energy storage concepts, Need of energy storage in renewable energy, Limitations and impacts of energy storage technologies.

Thermal energy storage

Sensible heat storage, Latent heat storage (phase change materials), Thermochemical energy storage (reversible reactions), Material selection, Application-specific constraints, Design of thermal energy storage for utility-scale renewables particularly for solar and geothermal power.

Electrochemical energy storage

Battery system structure, Elementary principle, Different types of batteries, Battery Management Systems, Aging of electrochemical batteries, Design of battery bank and economic evaluation for intermittent renewable energy systems.

Chemical energy storage

Concepts of power-to-gas and power-to-liquid, Efficiency and cost of fuel production, storage, transport, and electrical restitution, Comparison of different power-to-fuel pathways.

Mechanical energy storage

Concepts of pumped hydro, compressed air, flywheel.

Electrical energy storage

Concepts of energy storage in capacitors, ultracapacitors, and supercapacitors, Comparison of magnitude and quality of energy stored.

System integration of energy storage solutions with power generation units and grid management

Semester	Code		Module Title	C/E/O	GPA / NGPA			
8	CH4255	I	Renewable Energy	Е	GPA			
Hours	s/Week	Credita	Propagnicitas / Conagnicitas	Evalu	ation %			
Lecture	Lab/Tutes	Creans	Frerequisites / Corequisites	CA	WE			
2	2	3.0	CH1051, CH1044, CH1061	40	60			
Learning Outcomes								
After comp	 After completing this module, the student should be able to, LO1: <i>Identify</i> renewable energy resources. LO2: <i>Describe</i> principles of renewable energy technologies. LO3: <i>Analyse</i> the applications of renewable energy technologies in domestic, industrial, and utility-scale. LO4: <i>Apply</i> modelling and simulation tools to analyse renewable energy technologies. LO5: <i>Evaluate</i> site-specific techno-economic-environmental viability of renewable energy technologies. 							
Syllabus O	outline	1		6,				
Introduction Overview of Wind enerry Wind resona application Hydel enerry	on of renewable e gy urce identifica s. gy	nergy concepts. ation and assessn	nent, Conversion technologies and	ł principles,	Wind power			
Hydro reso hydro energ Solar ener	urce identifica gy applications gy	tion and assessme s.	ent, Conversion technologies and p	rinciples, Pic	o/Micro/Mini			
Solar reso principles, Biomass er Biomass re	urce identifica Solar PV/solar nergy source identifi	ation and assessment thermal application and assessment	nent, Solar PV/solar thermal con ons in different scales.	version tech), Conversion	nologies and technologies			
and princip Micropow	er design and	ombustion/gasific	cation/pyrolysis applications in diffe ng software tools	erent scales.				

Design and optimization based on site-specific technical potential, levelized cost of energy, and environmental impact.

Semester	Code		Module Title	C/E/O	GPA / NGPA		
8	CH4651	Cor	nbustion Technology	Е	GPA		
Hours	s/Week	Credita	Propagnizitas / Conagnizitas	Evalua	ation %		
Lecture	Lab/Tutes	Creuits	r rerequisites / Corequisites	CA	WE		
2	2	3.0	CH1051, CH 1044, CH2631, CH2015, CH4501, CH3055	40	60		
Learning	Outcomes						
After comp	leting this mo	dule, the student s	hould be able to:				
•	LO1: Unders	stand the fundame	ntal concepts in combustion.				
•	LO2: Determ	ine the factors inf	luencing the flame speed and the fla	ame thickness	s of laminar		
	premixed fla	mes.	5 I I				
•	• LO3 Use the conserved scalar formalism to understand and explain non-premixed						
	behaviour.	e oniser ved seurar		i non pronin			
•	LO4: Estima	<i>te</i> the dronlet evar	poration and burning rates				
	LO4: Listinu	bulent combustion	n concepts to characterize combusti	on regimes			
-	LOS: Ose tul	Sundamental conce	ants in solid combustion to develop	simple model	s of the		
•	burning of a	carbon particle	epis in sond combustion to develop	simple model	is of the		
•	LO7: Annhur	earboil particle.	ughtify the pollutent omissions from	ambustion	avetoma		
Syllobus (<u>LOT. Apply I</u> utling	neulous used to q	uantity the pollutant emissions from	Combustion	systems.		
Introductio	n to combustion	n					
Motivation t	o study combust	tion definition of co	mbustion, combustion modes and flame	types			
Review of p	rerequisites		moustion, comoustion moues and mane	c) peo			
Chemical the	ermodynamics a	nd equilibrium - Ma	ass, energy and atomic species conservat	tion; Multispec	ies equilibrium		
and calculati	on method						
Chemical ki	netics - Principl	es of chemical kinet	ics (law of mass action and activation e	nergy); Hydrod	carbon reaction		
chains; Polli	itant formation,	Multistep reactions	and explosions; Steady state and partial	l equilibrium a	pproximations;		
Application	s of chemical k	e scales	075				
Common an	proximations in	combustion analysi	s (Static reactor. Perfectly stirred reactor	r. Plug flow rea	ctor): Thermal		
explosions;	Autoignition	,,	. (.,8	,,,		
Heat, mass a	and momentum	transfer in combusti	on - molecular and convective fluxes: C	haracteristic no	on-dimensional		
numbers: Da	ıhmköhler, Lewi	is, Schmidt, Prandlt,	Peclet, Reynolds				
Pollutant er	nissions	T C C C					
Combustion	generated poll	lutants; Effects of	pollutant; Quatification of emissions	; Emissions f	rom premixed		
L aminar nr	emived flames	i non-premixed com	busuon				
Laminar pre	mixed flames: c	oncepts and measure	ements: Characteristic time and space sc	ales. Zeldovich	number: One-		
dimensional	conservation eq	uation and simplifie	d solutions; Effects of mixture composit	tion, stretch and	1 curvature		
Laminar no	n-premixed fla	mes					
Laminar diff	usion flames: co	oncept and measurer	nent methods; Characteristic time and sp	bace scales; Co	nserved scalars		
and mixture	fraction; One-di	mensional conserva	tion equations: co-flow and opposed flow	w; Limit case so	olutions; Effect		
of mixture c	omposition and	fluid dynamics					
Applications	involving liqui	ids combustion: Clo	used form analytical solutions to the si	mplified gover	ming equations		
applicable to	droplet evapora	ation and burning: Ir	fluence of droplet size and ambient con	ditions on drop	let evaporation		
and burning;	Droplet gasifica	ation rates and dropl	et lifetimes; One dimensional analysis of	f a simple, stead	ly flow, liquid-		
fuel combus	tor						
Turbulent f	lames:						
Characterist	ic time and space	e scales; Regimes of	turbulent combustion; Measurement me	thods and resul	ts; Approaches		
to modelling	to turbulent combi	ustion; I urbulent pre	emixed flame characteristics; Turbulent c	infusion flame	cnaracteristics;		
Rurning of	solids:	iousuon meory					
Applications	s involving solid	ls combustion: Fund	damental concepts in solids combustion	: heterogenous	s reactions and		
simplificatio	ons; Burning of c	arbon: one-film mo	del, two-film model; particle burning tin	nes; Coal comb	oustion		

Semester	Code		Module Title C/E/O GPA / NGPA					
8	CH4215	Environmenta	l Engineering and Management	Е	GPA			
Hours	s/Week	Crudita	Duran anticitar / Companyi citar	Evalu	ation %			
Lecture	Lab/Tutes	Creatis	Prerequisites / Corequisites	CA	WE			
2	2	3.0	CH3045	30	70			
Learning (Outcomes							
After comp	leting this mo	dule, student shou	Id be able to:					
•	LO1: Identify	and describe env	vironmental pollutants management	t techniques.				
•	LO2: Apply e	environmental acc	ounting in project analysis.					
•	LO3: Apply 1	nathematical mod	els to simulate pollution control an	d treatment o	operations			
•	LO4: Assess	environmental im	pacts.					
•	LO5: Design	pollution control	equipment and processes.					
Syllabus O	outline							
Wastewate	er Engineerin	g:						
Treatment	levels, physica	and chemical tre	eatment operations, biological (Up	flow anaerob	ic sludge			
blanket (UA	blanket (UASB), membrane bio reactors) and advanced treatment processes.							
Air Polluti	Air Pollution Control:							

Particulate and gaseous pollutants control equipment and processes.

Solid Waste Management:

Integrated solid waste management, collection, treatment, and disposal.

Hazardous Waste Management and Engineering:

Hazardous waste treatment and disposal.

Environmental Impact Assessment:

Procedure and methods

Basics of Environmental Accounting:

Environmental valuation techniques and project analysis

Semester	Code		Module Title	C/E/O	GPA / NGPA				
8	CH4460	Sustaina	able Process Technology	Е	GPA				
Hour	s/Week	Caradita	Promo anticita a / Como anticita a	Eval	uation %				
Lecture	Lab/Tutes	Creatis	Prerequisites / Corequisites	CA	WE				
2	2	3.0	CH3045	30	70				
Learning	Learning Outcomes								
After comp After comp Syllabus C Introducti processes Process an Life Cycle Product lift (cradle-to-5 Energy Su Energy Flo Carbon Fo GHG emis Procedure Water Foo Eco-Desig Raw mater Life Cycle Goal and s inventory a methods of Basics of S Case Stud	oleting this mo LO1: Descrit LO2: Apply 1 LO3: Evalua sustainability LO4: Select 1 LO5: Evalua LO6: Analyzy Dutline on to Sustain on to Sustain on to Sustain d Technology Thinking of 1 e cycle, Proces grave, cradle-t stainability A ww Analysis, S ootprint Assess sion reductio and Technique opprint Assess n and greenin ial extraction, Assessment (cope definition and databases, J CLCA results, Social LCA an ies for Sustain	dule, student shou be the characterist ife cycle thinking te energy flows of processes and tech te carbon footprin e environmental in mable Process Tech Selection Products and Pro- ss life cycle, and vo- o-gate, cradle-to-co- ssessment of Pro- ankey Diagrams, I sment ns or removal en ss ment g the supply chai manufacturing, tra LCA) Methodolo n, System boundar ife cycle environn Introduction to LC d Life Cycle Cos nable Process Tec	Id be able to: ics of sustainable process technolo for products and processes in the p f process life cycle and interpret the mologies based on environmental s it and water footprint of products a mpacts of products and process life chnologies and Strategies to de presses: ways to define a life cycle scope of rradle, gate-to-gate scopes) cesses: Energy Sustainability Indicators fo hancements: in: ansportation, use and end-of-life st gy: ry, Functional unit, Allocation rule nental impact (LCIA) categories, L/ CA software tools ting chnologies and LCA	gies. process indus em for energ sustainability nd processes e cycle stages etermine su f a given pro r Processes ages of a pro es, Introducti CIA methods	try. y				

Semester	Code	Мо	dule Title	C/E/O	GPA / NGPA
8	CH4351	Up-stream Oil	and Gas Operations	Е	GPA
Hou	rs/Week	Credita	Prerequisites /	Evalu	uation %
Lecture	Lab/Tutes	Creatis	Corequisites	CA	WE
2	2	3.0	None	30	70
Learning Ou	itcomes				
 I I I I I I I I I Syllabus Out 	ADT: State the scorp the petroleum rigs a AD2: Describe com AD3: Understand c AD4: Implement teo atural gas. AD5: Analyse probl AD6: Apply modell AD7: Design optim perations in crude	and carriers. aposition, characterizis haracteristics of good chnologies for enhance lems in upstream pro- ing and simulation to al process units for o oil rigs and carriers.	ation, and classification of l Reservoir Rock and Expliced oil and gas production cessing operations and part ols to identify causes and s il and gas recovery process	crude petrole oration Tool and onsite pu ial / full shu solutions for ses and trans	eum. s and Method cocessing tdowns. problems. port
Upstream pet Analysis of c Composition Production of Formation, E Separation of Two-phase ga Treatment of Emulsion trea sweetening, S Field process Overview of Natural Gas I Cryogenics I HSE Manag	roleum processing rude petroleum and Characteristic of crude oil xploration, Drilling f produced fluids as oil separation, T f produced fluids atment and Dehydn storage tanks and c sing and Treatme gas field processin Liquids. Processes and Gas ement in crude oi	and key operations i s of crude petroleum g and Recovery meth Three-phase oil water ration of crude oil, de other field facilities, F nt of natural gas g, Sour gas treating, s Compressors in Ga l rigs and carriers	n the petroleum rigs and ca ods of crude. gas separation. salting of crude oil, Crude Produced water treatment. Gas dehydration, Separation aseous fuel Processing	urriers. oil stabilizat on, and Fract	ion and ionation of

Semester	Code		Module Title	C/E/O	GPA / NGPA		
8	CH4381	Petrole	eum Refining Operations	Е	GPA		
Hours	s/Week	Credita	Propagniaitas / Conagniaitas	Evalua	ation %		
Lecture	Lab/Tutes	Creuits	Frerequisites / Corequisites	CA	WE		
2	2	3.0	None	30	70		
Learning Outcomes							
•	LO1: State th processes in LO2: Identify hydrocarbon LO3: Schedu derivatives. LO4: Analyst LO5: Apply 1 LO6: Design	the scope of the do the petroleum refi y functionalities of fuels based on the <i>le</i> production rout <i>e</i> problems in petr modelling and sim optimal process u	wnstream petroleum processing and nery process. f production processes and technolo eir applications. tes & processes for the synthesis of roleum processing operations and pa- nulation tools to identify causes and units for production processes in pet	describe key gies in produc petrochemica artial / full shu solutions for roleum refine	chemical ction of ls and their ttdowns. problems. cries.		
Syllabus C	Outline						
Introducti Character Application application Refinery P Polishing & Product H Utilities M Production Problems i Modelling	on Subsurfac ization of Pet: h based Petrolo S. Processing of (Conditioning Candling & Sto Canagement in h Facilities in in petroleu and simulatio	e Operations of C roleum eum Products Cha Oils and Gasses g Processes in liqu orage in Oil and C o Oil & Gas Proce m processing ope ons of major cher	Dil & Gas Production racterization – Automobile, Power ; tid fuel processing & Gaseous Fuel ; Gas Processing ess Facilities & HSE Management erations and partial / full shutdow mical processes in petroleum refin	generation, ar Processing. t in Petroleu ns t eries	nd other m		

Semester	Code		Module Title	C/E/O	GPA / NGPA
8	CH4294		Bioengineering	Е	GPA
Hours	s/Week	Char I'ta	Description (Constitution	Evalu	ation %
Lecture	Lab/Tutes	Creatis	Prerequisites / Corequisites	CA	WE
2	2	3.0	None	40	60
Learning (Outcomes			•	•
Learning (After comp • • • • • • • • • • • • • • • • • • •	Dutcomes leting this mo LO1: Identify applications LO2: Quanti LO3: Use too LO4: Design LO5: Evalua LO6: Trouble putline processing n to upstream ism ation animal and p nd design of m growth kinetic cle for batch of mono-kinet netics	dule, the student s <i>y</i> , <i>recognize</i> , <i>and a</i> <i>fy</i> kinetics of micro- ols of bioprocess of key aspects of an <i>te</i> performances of <i>eshoot</i> operationa processing, isola lant cell cultivation nedia for specific ison cultivation, grow ic parameters, pro-	should be able to: appreciate engineering contribution robial growth and enzyme action engineering industrial-scale fermenter of a bioreactor l problems in bioprocessing tion, preservation, and improvement on and growth requirements, inocu- function, quantitative aspects of mice the models for batch, plug flow and oductivity optimization and cell recy	s in bioengine nt to industria ulation and c crobial growth nd continuous rcling	eering ally important ulture media, h and product s bioreactors.
Introduction reactor type	n to enzyme i es and enzyme	reactions, Mechae inhibition	elis–Menton approach and Briggs-F	Haldane appro	oach, enzyme
Sterilization Sterilization Bioreactor	on n of fermentat s – selection,	ion media and air, design, operation	, sterilization kinetics, process desig	'n	
Modes of o control, ma strategies a	peration, type ass transfer co nd criteria	s of reactors, designcepts, power con	gn of agitated bioreactors, measuren nsumption, design of aeration and a	nents, instrum agitation syste	nentation, and ems, scale up
Recovery a	and purificati	on of bio-produc	ts		
Process sel	ection and des	ign			
Tissue Eng	gineering	olution: call source	as and culturing, scaffolds, the may	forward	
meed, chall	enges, and eve	siution; cell sourc	es and culturing; scarroids; the way	Torward	

Semester	Code	Module Title		C/E/O	GPA / NGPA
8	CH4691	Food Process Engineering		Е	GPA
Hours/Week		Crudita Dramariaitas / Concerniaitas		Evaluation %	
		Caralita	Durana wasiaita w / Cana wasiaita w		
Lecture	Lab/Tutes	Credits	Prerequisites / Corequisites	CA	WE
Lecture 2	Lab/Tutes 2	Credits 3.0	Prerequisites / Corequisites None	CA 40	WE 60

Learning Outcomes

After completing this module, the student should be able to,

- LO1: *Explain* the mechanisms of spoilage and deterioration of foods and raw materials.
- LO2: *Describe* the role and function of packaging materials in food preservation.
- LO3: *Relate* food quality (texture, sensory, structure, etc.) to the chemical composition, processing, and storage conditions.
- LO4: *Develop* simple understanding on nutrition and dietetics and explain the effects of processing steps on nutritional quality.
- LO5: *Evaluate* common food processing techniques and preservation methods for safe and quality food production.
- LO6: Calculate and model different thermal technologies.

Syllabus Outline

Introduction to Food Processing

Food is Life; Evolution of Food Industry from Make-Service-Care; Properties of Food Material (mechanical, thermal, electrical properties, structure, water activity, phase transition phenomena in food). **Impact of food processing on nutritional quality**

Nutrient value of different types of food; Role of nutrients; Food energy; Food processing and effect of unit operations on nutritional quality.

Food Engineering Operations

Preparative Operations; Structuring Processes (crystallization, glass transition, extrusion, emulsification, fat replacement); Separation Processes (freeze drying, freeze concentration, drying, membrane separation).

Food Preservation and Shelf-life I

Farm to mouth interactions, stakeholders; Mechanisms of food spoilage (microbial, enzymatic, chemical, physical); Food Preservation Processes; Minimally processed food (need, techniques, hurdle technology). **Food Preservation and Shelf-life II**

Thermal Processing of Food [Thermal process parameters; Kinetics of thermal inactivation of MOs and enzymes; Lethality; Optimizing thermal processes for safe and quality foods; Current and emerging thermal technologies and equipment]; Low Temperature Operations [Chilling and Freezing; Factors affecting rate of freezing; Freezing time calculations; Properties of frozen food; Equipment and Methods]; Nonthermal preservation processes [Ionizing irradiation; High hydrostatic pressure preservation; Pulsed electric fields, Ultraviolet light and pulsed intense lights, Ultrasound treatment, Ozonation, Cold Plasma]; Chemical Preservation [Chemical control of spoilage (kinetics and antimicrobial agents); Antioxidants]; Biological Preservation].

Food Packaging

Factors governing the type of packaging and kinetics of packaging; Packaging materials; Atmosphere in the Packaging; Smart packaging.

What's Cooking-Trends in Food Engineering

Food mega trends; Functional foods; Food enrichment with natural ingredients; Probiotics and prebiotics; Nanofoods and Nanobiotechnology in food processing; 'Enginomics'.

Research

Research, being an integral part of the curriculum of undergraduate and postgraduate studies, not only boosts the research potential of the students but also contributes to furthering the boundaries of knowledge in the field of Chemical and Process Engineering. Undergraduate and graduate students at the department perform research in the areas of Energy and Environmental Engineering, Food and Biochemical Engineering, Polymer Engineering, and Petroleum Engineering. The availability of well-functioning and well-equipped laboratory facilities intensifies the value of the experimental work and research activities conducted by both undergraduate and postgraduate students.

CH 4751 - Research Project lays the foundation for students to initiate research studies at the undergraduate level. The module will allow students to develop research competencies identify to gaps/problems by reviewing the available literature in a critical manner, develop strategies/methodologies to address the research gaps, analyse results and derive conclusions from their research. Moreover, students would gain the opportunity to communicate their key research findings in peer-reviewed journals and national/ international conferences or symposia.

In addition, the department facilitates opportunities for postgraduate students to engage in state-of-the-art research projects under the supervision of academic staff members at the department. Students can enrol in M.Sc., M.Phil., and Ph.D. degrees at the department on a full-time or parttime basis and gain exposure to a better learning environment to acquire knowledge and experience essential for a postgraduate.

The research and development unit which has been set up as a collaboration of the department and the DSI Samson group also provides a platform for students to engage in projects related to rubber products and process development. Furthermore, the department is engaged in industrial research projects to provide innovative solutions for the sustainable development of the local industry.

Some of the recent research projects carried out at the department are,

- Computational fluid dynamics modelling of thermo-chemical processes
- Numerical simulations of biomass combustion and gasification processes
- Process development for synthesis of bioactive compounds and biofuels from microalgae
- Application of absorption and extraction techniques on wastewater treatment
- CO2 capture and airborne pollution control using industrial solid waste
- Life Cycle Assessment of biofuel and sustainable energy production processes
- Implementation of process control techniques and analyses on process optimization
- Effects of using natural fillers on mechanical properties of rubber
- Identification of best blend composition of natural rubber – thermoplastics blends for industrial applications
STUDENT HANDBOOK 2021 INTAKE

- Dynamic modeling and simulation of anaerobic digestion processes for solid waste management
- Assessment of sustainable energy potential of renewable resources

Comprehensive Design Project

CH4016, CH4035 – Comprehensive Design Project is the ultimate course for the B.Sc. Chemical Engineering Degree. It will allow the students to bring together much of their previously learned engineering knowledge on a real, practical problem. It contributes 10 credits gained in semesters 7 and 8.

The project is also quite different from the majority of the subjects that the students will be doing in the initial semester. It is a team effort and an open-ended project, where students get the opportunity to work as a team on open-ended projects with real industrial complications. Communication amongst members is vital. There is no "right" solution! - Just the "best" solution in the time available.

One of the goals of this subject is to introduce students to an industrial periphery where real life processes and problems will have to be addressed. The academic staff will endeavour to give advice and support as the student proceed in the project. The group will be managed by its members. There needs to be a leader who co-ordinates activities. It is the responsibility of the group members to ensure

- Biomass-based renewable energy systems
- Parameter optimization of chemical processes

that the project progresses at an appropriate rate. Good communication within the group is essential and this will be reflected in your final report. It will show the students' effort at teamwork and communication ability. As a UGC accredited B.Sc. Chemical Engineering degree program, DCPE places a high priority on this subject as part of your entry into the profession.

In this unit, student will be encouraged and facilitated to develop the ability and desire to:

- Work as a team on open ended problems within tight time constraints in such a way that all members contribute individually as well as collectively with proper communication
- Apply fundamental chemical and environmental engineering principles and available data from literature to design and analyse chemical processes.
- Make critical design decisions in a safe, creative, practical and cost-effective manner.
- Report the work in formal, concise, and in an organized manner.

Industrial Training

As a partial fulfillment of the B. Sc. in Chemical and Process Engineering degree program, it is compulsory for the undergraduates to undergo Industrial Training at an industrial placement related to the Chemical and Process applications. Industrial Training module is a compulsory Module of 06 Credits where the undergraduates must enroll for the module at the time of registration and enrollment for Semester 05. A11 undergraduates are placed in an industrial placement for a minimum duration of 24 weeks right after their Semester 05 is completed. The Industrial Training module has been designed to provide the practical exposure to the industrial applications of chemical and process engineering for the undergraduates. This is the main opportunity that is offered to the undergraduates with a dedicated time slot and official engagement given for working in an industry as a trainee Chemical and Process Engineer before the students graduate in their degree qualifications.

In order to have background knowledge and awareness about the Industrial Training program and to make Industrial Training more fruitful, a series of webinars/workshops/guest lecture sessions are arranged during the Semester 5. In these sessions, invited professionals from the industry address the students on the various topics, such as CV Preparation/ Improvement Tips, Interview Social Facing Skills and Etiquette. Occupational Safety, Introduction to Lean Manufacturing in Industries. Plant Maintenance Safety, Health. and Environmental aspects, etc.

In addition, the senior chemical and process engineering undergraduates who have already undergone Industrial Training in the recent years will also make presentations and share their experiences at different places with the undergraduates, waiting to go for industrial training. Further, the Industrial Training Coordinator of the Department conducts special awareness sessions and facilitates the undergraduates in the industrial training placement process by finding the industrial training places, guiding to apply for industrial training and facing interviews, and the selection process of the industrial placements of all undergraduates.

In the Industrial Training program, the undergraduate is supposed to apply the theoretical and experimental knowledge gained as an undergraduate, and to improve the practical skills, management skills and interpersonal skills, including professional ethics. Development of these skills is highly important to become a qualified engineer. Further, the student is required to cover the important areas. such as product manufacturing processes, waste treatment processes, process design, process modification, process optimization, problem identification, and problem solving. Each undergraduate must ensure that they select an industrial placement that is possible to achieve the learning outcomes (LOs) through their industrial training program as follows.

- Apply knowledge and principles of chemical and process engineering.
- Understand industrial systems, procedures, and practices. (i.e., administration, financial, general management, logistics, HSE, legal, etc.)
- Design solutions for industrial/engineering problems in the industry using modern tools and techniques. (i.e.,

Instrumentation, IT tools, software platforms, knowledge-based data, experimental design, etc.)

• Develop soft skills, such as teamwork, communication, time management, leadership, and understanding of professional ethics.

During the stay in an industry placement, the undergraduate is supposed to maintain a technical diary that covers the trainee's experiences on engineering, technical, and managerial aspects. The undergraduate's performance on Industrial Training is closely monitored and examined by an assigned academic staff member from the department. the department industrial training coordinator, industrial training division - University of Moratuwa, and National Apprentice and Industrial Training Authority (NAITA), by visiting the relevant industrial placement either physical and/or online mode. After successful completion of the industrial training program, students are supposed to submit a duly written technical report covering all aspects of their training to the industrial training division. The assessments/evaluations of the Industrial Training module are conducted by a senior lecturer attached to the industrial training division as the main examiner. The undergraduates must present training experience as an their oral presentation followed by a viva voce examination in front of an evaluation panel that consists of a senior lecturer attached to the industrial training division, one or more academic staff members of the DCPE. NAITA officials and a representative from the respective industrial training place may also participate in the evaluation panel. The undergraduate's level of knowledge, skills, and attitudes improvement along with the industrial training experience are evaluated during this final oral examination.

The Industrial Training module provides students a valuable opportunity to put into practice what they have learned so far and to learn from professionals to enhance their current knowledge and skills as well as attitudes required in professional environment. For a fruitful Training experience, undergraduates are encouraged to make the optimum use of the opportunities provided by their Training establishments and gain not only a more realistic understanding of Engineering in application, but also to obtain a holistic understanding of the corporate world and industrial environment by getting hands-on experience from grass root level to the top management. They can acquire relevant knowledge and skills in each area of exposure, while developing meaningful connections through networking with all hierarchical levels in the industry. Although every Training Establishment may not be equipped fully to provide a comprehensive training in all areas of interest, it is vital that students put maximum effort to fulfill expected learning outcomes as much as possible. This training experience will be beneficial in opening up career opportunities near or right after the graduation as well as be useful in academia through hands-on experience, industrial projects, and problem solving that will develop industrial research opportunities and life-long learning for an undergraduate's future.

Some industrial training places of the recent undergraduate batches are as follows.

- Ceylon Petroleum Corporation
- Unilever Sri Lanka Ltd
- Hemas Holdings PLC
- Industrial Solutions Lanka (Pvt) Ltd
- Ansell Lanka (Pvt) Ltd
- Lanka Sugar Company (Pvt) Ltd

- Ethimale Sugar and Plantations Ltd
- Nestle Lanka PLC
- Ceylon Biscuits Ltd
- GlaxoSmithKline Pharmaceuticals Ltd
- Ceylon Cold Stores
- Renuka Agri Foods PLC
- Trelleborg Lanka (Pvt) Ltd
- Phoenix Industries Limited
- Norochcholai Lakvijaya Coal Power Plant
- Siam City Cement (Lanka) Ltd
- Laugfs Lubricants Ltd
- Macksons Paints Lanka (Pvt) Ltd
- Midas Safety Inc.
- Ceylon Oxygen Ltd
- AEN Palm Oil Processing Pvt Ltd
- Heineken Lanka Ltd
- Alumex PLC
- Dipped Products PLC
- PGP Glass Ceylon PLC
- Rocell Bathware Ltd

- Coats Threads Export Pvt Ltd
- Ceylon Agri Foods Pvt Ltd
- Ceylon Graphene Technologies
- State Pharmaceutical Manufacturing Cooperation
- Lankem Ceylon PLC
- George Steuart Manufacturing Ltd
- Cargills Quality Diaries Pvt Ltd
- Camso Loadstar (Pvt) Ltd
- Phoenix Industries Ltd
- Norochcholai Lakvijaya Power Plant
- Siam City Cement (Lanka) Ltd

Awards Available for DCPE Students

Award Ceremony

Thusitha Senevirathne Memorial Scholarship

Awarded for the CPE undergraduate who has obtained the highest GPA in the first attempt in Level 3 Semester 1 Examinations, provided that the student obtains an Overall GPA of 3.7 or above.

Thusitha Senevirathne Memorial Award

Awarded for the CPE undergraduate who is specializing in the field of Environmental Engineering and has obtained the highest GPA in Level 3 and Level 4 at the first attempt, provided that the student obtains an Overall GPA of 3.7 or above

Unilever Award

The CPE undergraduate who obtains the highest marks for the Final Year Comprehensive Design Project, provided that he obtains a grade A receives this award.

Dr. Mahesh Amalean award

This prestigious award is given to the best final year undergraduate research project of the Department of Chemical and Process Engineering, provided the group of students obtain a grade of 'A' or above.

Convocation Awards

Gold Medal awarded by the Hayleys Group

Awarded to the undergraduate of the DCPE who obtains the highest Overall GPA at the BSc. Engineering Degree Examination, provided that the student obtains an Overall GPA of 3.8 or above and is awarded at the General Convocation.

Most Outstanding Graduand of the year

This prestigious award is presented to the most outstanding graduate of the year of the Faculty of Engineering and is awarded at the General Convocation. The awardee is expected to display an exceptional academic standing with a GPA exceeding 3.7; First Class Honors, also demonstrating excellent leadership qualities, and also a person who has made a significant contribution through participation and service to the university and community.

Vidya Jyothi Professor Dayantha S. Wijeyesekera Award

This prestigious award is presented to the most outstanding graduate of the year of the University of Moratuwa and is awarded at the General Convocation. The awardee is expected to display an exceptional academic standing with a GPA exceeding 3.7; First Class Honors, also demonstrating excellent leadership qualities, and also a person who has made a significant contribution through participation and service to the university and community.

INDUSTRY COLLABORATION

Mentoring

Mentoring is to support and encourage the students to manage their own learning and behavioural while maximizing and enhancing their potential, soft-skills, performance, and becoming a competent and a self-confident person. Unique and distinguished industrial from related industries personals are connected with students through the department in order for the students to get an intimate experience in the industry surroundings. During a period of 13 weeks in semester IV and V, each group of students are assigned a mentor and students are to travel the mentor's organization. Some of the key elements focused by the mentors are leadership skills, communication skills, teamwork, attitude, etiquette, and personal grooming. This course provides the students a virtuous opportunity to extend themselves as a well- rounded person who is well equipped for the future.

Department Industry Consultative Board Meeting (DICB)

Department Industry Consultative Board (DICB) Meeting aids the department to meet industry representatives from several recognized industries. This has benefits for both parties. While the department seeks industry expertise to revise and renew its curriculum to meet the dynamic demand in the field, industry get the assistance of the department to address their various problematic situations.

Consultancy Services

The department is at all times approached by the industry to seek solutions for their problems and to assist in enhancing their performance. Department might act like a third party in assisting them while sometimes directly engaged in the research and development work under a contract with the interested party. Students who are enthusiastic in engaging in these work might have a chance to work with the academic staff and gain valuable knowledge and experience.

Field Visits

The department arranges field visits for the students to visit the industries and get an insight into the processes and working environment. This allows the students to expand their knowledge and experience which otherwise would be limited to lectures and books.

Among the most recent field visit destinations are,

- Lakvijaya Power Station, Norochcholai
- Phoenix Industries Ltd., Makandura
- Lanka Sugar Company, Sewanagala
- Nestlé Manufacturing Facility, Pannala
- Lion Brewery PLC, Biyagama
- Haycarb PLC (Virtual tour during COVID-19 pandemic)

Incubators

SIL-UOM Rubber Products and Process Development Incubator

Director – Prof. Jagath Premachandra

UOM-SIL Rubber Products and Process Development Incubator is a model for the University and Sri Lankan industry partnerships in research and development. It was established in the DCPE in the year 2011 in collaboration with Samsons International PLC. Later, Samson Compounds (Pvt) Ltd. joined as a partner of the Incubator. D. Samson Industries (Pvt) Ltd. also became a partner of the Incubator in December 2019. The incubator is a common platform on which the university academics and members of the research and development divisions in the DSI companies group of engage in the development of products rubber and manufacturing processes. The projects undertaken by the incubator includes trouble shooting, problem solving, new product and process development and process modification.

DCPE undergraduates are also benefitted by the incubator. They can obtain real industrial exposure and improve their theoretical knowledge and practical skills by participating in research and development activities. In addition, they are able to enhance the ability of analytical thinking and the capacity of innovation.

COLLABORATIONS WITH INTERNATIONAL UNIVERSITIES

- East China University of Science and Technology for petroleum process engineering.
- Europe Sri Lanka capacity building in energy circular economy "EUSL Energy" online digital joint master's degree program.
- A joint study program and student-staff exchange program with Sirindhorn International Institute of Technology, Thammasat University.

SPECIAL EVENTS AND PROGRAMS

Annual General Meeting (AGM)

Annual gathering of Chemical and Process Engineers of University of Moratuwa is organized by the ChESS with the participation of department's undergraduate, graduates, academic staff and the representatives from the industries. Most recently, the 2018 event was held at Sri Lanka Foundation Institute. The night with magnanimous meetings with industrial leading characters passed out from University of Moratuwa was a precious occasion for chemical and Process Undergraduates to meet their role models.

Yaye Padura

An evening with glorious musical spills over the "Yaye Padura" which is another foremost event annually functioning at the department courtyard, organized by the fresh siblings of the department family in order to facilitate the interaction between undergraduate students of the DCPE as well as to make a stage to express instrumental, vocal and dancing talents of department students and staff.

'EXORIOR'

the Latin word "Exorior" narrates exuberant actions like rising up, coming forward and cheering. As the name proposes, the event Exorior is a vigorous full day program organized to provide a prodigious platform for our undergraduates to develop their team building skills including leadership skills, creative thinking and interpersonal skills by actively participating in team activities and interacting with each other in a friendly and enthusiastic environment.

Most recently the 2018 event was organized under the theme, 'Awaken the leader within you'. The program was held with the presence of undergraduates of Level 02, 03 and 04, post graduate students, non-academic staff and the academic staff. The agenda consisted of various activities, which helped each and every participant to improve his/her abilities and skills in areas of teamwork and personality development. All the participants irrespective of their age or level spent a day full of friendship and life and were able to gain a glimpse of experiences and strengthen their bonds.

CPE Sports Fiesta

Another annual interactive event organizing by the Level 02 students of the DCPE is CPE Sports Fiesta. This is a sports day that brings all the joys, bonds, freedom and an inestimable change from the impassable academic matters for all students, academic and non-academic staff family members of DCPE.

Chemical Engineering Conference (ChemECon)

This event focuses on portraying the potential of undergraduates and fresh graduates in the Chemical and Process Engineering Department of University of Moratuwa.

The primary objective of the event being bridging the gap between industry and university research and innovation arena in the field of Chemical and Process Engineering, the event showcases the final year research studies and industrial projects conducted by the students of the department.

For the first time ChemECon 2020 was held under the theme of "Solution worth spreading". The event comprised of three sessions; the main event and two breakout sessions which were held parallelly on the day of the event. The breakout sessions were conducted under two themes, "Product and process optimization" and "Sustainable technologies & environmental remediation" which focused on two separate areas in the chemical and process industry. The 'Union Chemicals Award for the Best Presentation' was also awarded in all breakout sessions.

SOCIETIES/CLUBS

Chemical Engineering Student Society (ChESS)

Senior Treasurer: Prof: Jagath Premachandra

The Chemical Engineering Student Society was formed in the year 2004. It is dedicated to building a responsibility among undergraduates to integrate social concerns into their academic lives. Through a variety of interdisciplinary activities, focusing on leadership development and interactive learning, ChESS at UoM strives to work together with industrial, social and student communities.

Specific objectives of the ChESS include,

- Enhancing the involvement of the Chemical and Process Engineering students in industry related activities and projects
- Improving the interaction with the society through socially beneficial activities
- Sharing knowledge with school children through interactive activities and projects

Activities

• Organizing the Annual General Meeting, of DCPE, providing a great opportunity for the members of the CPE family to interact with each other. At the AGM undergraduates and postgraduates have the opportunity to meet each other as well as their dearest academic staff.

• Annually publication of the magazine "Chemunique" which has a wide circulation.

Research for Undergraduates (R4U) Club

Senior Treasurer: Dr. Thilini U. Ariyadasa

The Research for Undergraduates Club was initiated in 2019, with the aim of providing a better understanding on research and its importance to DCPE undergraduates. The intention of the club is to perform as a knowledge sharing platform, by providing guidance to enhance the research skills of the club members through workshops, lectures, peer mentoring, networking with research communities and by providing hand-on experience in research. Through these activities, it is expected to develop personal and academic skills of club members, which in turn would create positive impacts on further development of the country.

Objectives of R4U include,

• Providing opportunities for the club members to get exposure to the area of research and to enhance their research skills/improve knowledge.

- Guiding members to engage in research through workshops, lectures, peer mentoring and networking with the research community.
- Providing guidance to conduct research and publish the research outcomes.
- Supporting academic and personal development of the club members.

Activities

- Explorer, an interactive series of sessions conducted to spread awareness to club members about the opportunities and pathways available beyond the discipline of chemical and process engineering.
- The R4U club acts as a platform to link available research projects and club

members, thereby facilitating hands-on experience in research work and teamwork.

Alumni Association

The Alumni Association of the DCPE is the hub that reconnects all passed out graduates of the department, young and old. Its prime objective is to enhance a continuing relationship between the department and its older generations. Alumni membership is open to all graduates from the department.

LABORATORY FACILITIES AND RESOURCES

Laboratory Facilities

The DCPE is proud to have a well-equipped and well-functioning set of laboratories that facilitate both undergraduates and postgraduate students with their experimental work and research. At present, the department is in the process of establishing and developing new laboratory facilities with 24 hours access for facilitating the students to conduct long-term experiments and research. The assistance of the competent and the wellqualified technical officers and the technical assistance staff members for the experimental work and research activities is also significant.

Unit Operations/ Pilot Plant Laboratory

Lecturer in Charge: Dr. (Mrs.) Duleeka Gunarathna Technical Officer: Mr. B. H. P. Mahendra Boiler Operator: Mr B. A. R. D. Abeywardena Lab Attendant: Mr. Viraj Somarathna

Unit operations are the basic physical operations of Chemical Engineering. The Unit Operations Laboratory of the department is well-equipped to conduct both laboratory scale and pilot scale experiments, allowing students to gain hands-on experience with the fundamental principles and practical applications of chemical engineering. The apparatus for distillation. evaporation. crystallisation, heat transfer, retort processing, filter press, fluidized bed, mixing and centrifugation and are few of the outstanding equipment in the laboratory.

Polymer Physical Testing and Latex Laboratory

Lecturer in Charge: Prof. Shantha Walpalage Technical Officer: Mrs. Shameera De Silva Lab Attendant: Mr. D. S. Dayananda

The Latex Technology Laboratory of the equipped department is with latex characterization instruments for latex product manufacture while it is also equipped with several instruments to measure chemical properties of polymer. Also, instrumentation to analyse various properties of rubber and plastic such as physical, mechanical and thermal properties namely; specific gravity, rebound resilience, tensile and compression, abrasion resistance, melt flow index and other are available in this laboratory

Process Control Laboratory

Lecturer in Charge: Prof. Mahinsasa Narayana Technical Officer: Mrs. H. B. R. Sajeewani Lab Attendant: Mr. D. S. Dayananda

Design and operation of processes that are safe, meet the production requirements with high quality with profit are the premier objectives of a Chemical and Process Engineer. Therefore. the process instrumentation and control are vital aspects to be mastered by the students. The Process Instrumentation and Control Laboratory of the department is equipped with various process modelling and simulation facilities such as process simulator, numerical control, process feedback control study unit to enhance the student competencies.

Industrial Chemistry Laboratory

Lecturer in Charge: Dr. (Mrs.) Tharushi Keerthisinghe Technical Officer: Mrs. Indika Athukorala Lab Attendant: Mr. Gihan Peiris

The Industrial Chemistry Laboratory supports many course modules for both undergraduate and postgraduate studies through several experimental setups and by facilitating research activities.

Reactor Engineering Laboratory

Lecturer in Charge: Dr. Manisha Gunasekera Technical Officer: Mrs. Indika Athukorala Lab Attendant: Mr. Gihan Peiris

Reactor Engineering is one of the core modules in chemical and process engineering. The Reactor Engineering Laboratory is equipped with facilities including a batch reactor and a plug flow reactor which provides students with hands-on experience in different reactor types.

CAPD /CAM Centre

Lecturer in Charge: Dr. Mahinsasa Rathnayake System Analyst: Mr. Chinthaka Narangoda Technical Officer: Mrs. H. B. R. Sajeewani Lab Attendant: Mr. Asanka Kumara

The centre facilitates the studies with experience in many process simulation applications. It is being used to offer many useful software packages such as AutoCAD, SolidWorks, LabVIEW, MATLAB and Simulink, Scilab, Aspen Plus etc., that are particularly useful in the industry of Chemical and Process Engineering. The centre supports academic activities by providing internet access to gather necessary resources for their studies.

Environmental Engineering Laboratory

Lecturer in Charge: Ms Madurika Geethani Technical Officer: Ms. Dineshi Rodrigo Lab Attendant: Mr. B. Karunathilake

The Environmental Engineering Laboratory necessary experience facilitates and knowledge in environmental engineering. It is equipped with lab-scale and pilot-scale equipment facilities related to wastewater and solid waste treatment. Facilities are available to determine key parameters related to water/wastewater analysis. Pilot-scale experimental setups are available to conduct experiments under aerobic and anaerobic waste treatment processes. Furthermore, online data acquisition and monitoring of anaerobic waste treatment processes are conducted using newly automated reactor systems.

Transport Phenomena Laboratory

Lecturer in Charge: Prof. Shantha Amarasinghe Technical Officer: Mr. B. H. P. Mahendra Lab Attendant: Mr. Viraj Somarathna

Transport Phenomena Laboratory has been developed as an undergraduate teaching laboratory. The main focus is to demonstrate the fundamental concepts in heat, mass and momentum transport. Students are encouraged to learn through hands-on experiences. Rankine Cycler is the latest arrival to the lab. Students are able to understand the fundamentals of steam power generation and familiar with the associated become thermodynamic principles and efficiencies of the Rankine power cycle. The laboratory is further equipped with the following teaching units.

- Flow measurement unit
- Centrifugal pump demonstration unit
- Equipment test bench to study analogy between fluid friction and heat transfer
- Apparatus for determining heat loss from bare and lagged pipes
- Computer controlled gaseous mass transfer and diffusion coefficient unit
- Computer controlled liquid mass transfer and diffusion coefficient unit

STUDENT HANDBOOK 2021 INTAKE

Polymer Processing Laboratory

Lecturer in Charge: Prof. (Mrs.) Shantha Egodage Technical Officer: Ms. Harshani Hettiarachchi Lab Attendant: Mr. U. K. D. D. N. Gunasekara

The Polymer Processing Laboratory provides the students with the opportunity to gain experience in polymer processing techniques. This laboratory offers a wide range of pilot plant scale machinery for mixing and subsequent processing of both plastic and rubber, including an injection molding machine (plastic), blow molding machine (plastic), extruders with single and double screws (plastic), hot feed extruder (rubber), internal mixer, two-roll mill, plasticorder, presses, oscillating disc rheometer and processability testing equipment.

Microbiology Laboratory

Lecturer in Charge: Dr. (Mrs.) Thilini Ariyadasa Technical Officer: Mrs. Indika. Athukorala Lab Attendant: Mr. B. Karunathilake

Microbiology Laboratory of DCPE is focused on understanding the diverse cellular and metabolic processes of microbes for the production of pharmaceuticals, chemicals and energy. The laboratory is equipped with autoclave, incubators, incubator shakers, centrifuges, colony counter, class II biosafety cabinet, -20°c freezer and also state of the art equipment including PCR machine, horizontal gel electrophoresis system, gel documentation system and microscopy core facilities essential for the advance research in the area of metabolic engineering.

Food Engineering Laboratory

Lecturer in Charge: Prof. (Mrs.) Sanja Gunawardana Technical Officer: Mrs. Ishara Gayani Lab Attendant: Mr. Asanka Kumara

Food Engineering Laboratory facilitates the students with experimental and research work on food-biochemistry, and food process engineering. The laboratory is equipped with a spray dryer, retort sterilizer, freeze dryer, fruit juice extractor, dough mixer and other ancillary units required in food processing.

Analytical Instruments Centre

Lecturer in Charge: Dr. (Mrs.) Tharushi Keerthisinghe Technical Officer: Mr. Dinuka Wijegunarathne Lab Attendant: Mr. Gihan Peiris

Instrumentation is vital for proper measurement and controlling of processes. The Process Instrument Centre of the DCPE consists of advanced modern analytical measurements. The Gas Chromatograph, High Performance Liquid Chromatograph, Differential Scanning Calorimeter, Particle Size Analyser and UV Spectrophotometer are among these instruments. This centre provides a combination of testing facilities for academia and industrial purposes.

Both undergraduates and postgraduates experience the techniques used in qualitative analysis and quantitative analysis related to their subject modules and research projects by using the instruments in the Instrument Centre. For instance, they learn to identify the unknown components in a mixture and to determine the relative amounts of the components therein. Further, they can analyze the progress of a reaction.

Lecturer in Charge: Dr. Thushara Subasinghe Technical Officer: Mrs. Hasini Gunarathna Lab Attendant: Mr. S. M. R. N. Dhammika

The Petroleum Testing Laboratory is equipped with the newest laboratory instruments to facilitate students with experimental work on petroleum engineering. The automated vacuum distillation unit, sulphur analyser, octane analyser, bomb calorimeter and viscometer bath are only a few experimental setups in the laboratory. As well, it is equipped with the necessary apparatus to provide the student with knowledge and experience in energy engineering and fuel technology. The laboratory includes many apparatuses such as the soxhlet apparatus, Reigdens specific surface apparatus, the Mohr westphal balance, the Pensky Martens closed cup and Cleveland open cup, Engler viscometer and Saybolt universal viscometer, Penetrometer, Universal torsion viscometer, Pilot plant leaching unit, etc.

24-hour-Research Laboratory

Laboratory 1

Lecturer in Charge: Dr. (Mrs.) Tharushi Keerthisinghe Technical Officer: Mrs. PDM Rodrigo Lab Attendant: Mr. B. Karunathilake

Laboratory 2

Lecturer in Charge: Dr.(Mrs) Dilhara Sethunge Technical Officer: Mrs. Ishara Gayani Lab Attendant: Mr. B. Karunathilake

Laboratory 3

Lecturer in Charge: Dr. (Mrs.) Thilini Ariyadasa Technical Officer: Mrs. Indika Athukorala Lab Attendant: Mr. Gihan Peiris 24 hours laboratory is a research laboratory providing facilities for research students to work around the clock. The DCPE offers research programs leading to PhD, MPhil and MSc. Three separate laboratory units are currently available with basic facilities for the research students to set up their test rigs and other equipment required for their experimental work. Computer facilities are also provided with unlimited access. Undergraduate students with research projects involving longer time durations for their experimental work are also encouraged to use 24 hours laboratory.

Resources

Prof Hubert D J Silva Memorial Resource Centre

The DCPE offers the students with access to a valuable collection of literature, specialising in the field of Chemical and Process Engineering. The Resource Centre is full of worthy reference material relevant to many branches of Chemical and Process Engineering, facilitating both the undergraduates and postgraduates with their academic and research activities.

Student Common Room

The Student Common Room is established to provide the undergraduates with an opportunity to socialize themselves.

Wi-Fi Access Facility

The students are provided with Wi-Fi facilities to acquire necessary knowledge and reference materials that are required for their academic studies and activities.

Study Zones

Spaces have been provided for the students with seating arrangements and Wi-Fi facilities to engage in academic activities and studies such as group activities and discussions.

DCPE.me – Microlearning Platform for Undergraduates at the Department

Microlearning is a novel pedagogical approach which deals with relatively small learning units. DCPE.me is a microlearning platform specially customized for the DCPE where lecturers, external resource persons and students interact with small learning units from the course modules or relevant topics in Chemical Engineering so that students can develop interest for exploring more on their own. The platform uses features of online social networks to boost interaction between lecturers, external experts, and students. For more information and to experience the platform, visit www.dcpe.me.

Operational Hours and Access to Laboratory Facilities and Resources

DCPE is usually open for academic work from 8.00 a.m. to 4.15 p.m.

All laboratory facilities in DCPE are available for students strictly during the scheduled practical sessions, and students should not use and interfere with any equipment without the permission of the Lecturer in Charge or under the guidance of a Laboratory Instructor.

The CAPD/ CAM Centre is open from 8.00 a.m. to 8.00 p.m. on weekdays and from 8.00 a.m. to 4.00 p.m. on Saturdays.

At present, all other facilities, excluding 24-hour laboratory facilities are available during working hours only.

OTHER INFORMATION

Getting Help and Advice

A full-time professional counsellor is employed by the University to provide professional counselling to the students who require special attention.

Career guidance unit of the UOM plays an important role in developing University-Industry links and provide necessary guidance for the students to select their future career.

To address common student problems, the faculty of engineering has further appointed a Staff-Student Liaison Committee at faculty level which has representatives comprising senior academic staff members of the faculty and nominees from respective student groups. The department Staff-Student Liaison Committee helps to solve issues related to academic work, facilities, etc.

The office of the Director of Undergraduate Studies provides guidelines, performance criteria and registration procedures to students. The student performance records are also available at this office for their perusal, allowing the students to plan their academic activities accordingly.

The DCPE staff was reported as one of the friendliest in the faculty (SWOT analysis report, IRQUE reviewers report). This encourages the students to approach the staff members about their problems to discuss at personal level.

The DCPE has appointed semester coordinators to guide the students on subject selection and other academic issues related to each semester. The DCPE has also appointed advisors for each student to provide guidance and necessary counseling on academic and personal problems during their stay in the University.

The students are given a module outline and lecture schedule at the beginning of the semester for each subject. This gives the course objective, learning outcomes, subject coordinator, lecturers, module content, evaluation criteria and a list of references.

The students are strongly encouraged to discuss the subject matter with the respective subject coordinator or the lecturers.

Institute of Engineers (IESL) Membership

The Institute of Engineers (IESL) is the premier engineering body of Sri Lanka. Members benefit by the development of individual's professional career and building network of technical and social contacts.

We encourage all CPE students to apply for the student membership category. For further information, contact the Industrial Training Division, University of Moratuwa.

AmericanInstituteofChemicalEngineers (AIChE)StudentChapter

Academic coordinator - Snr. Prof. Ajith De Alwis

The AIChE Student Chapter of University of Moratuwa is an association formed by students of DCPE at University of Moratuwa in collaboration with AIChE which is a professional association of more than 50,000 members that provides leadership in advancing the chemical engineering profession.

The AIChE Student Chapter of University of Moratuwa is dedicated to providing its

members with experiences to take a step beyond class and expand the skills and knowledge obtained during their university years.

As a professional community consists of students, AIChE Student Chapter of University of Moratuwa arranges opportunities for students to build a network of contacts in academia and in industry, fosters and disseminates chemical and process engineering knowledge and concepts used in the industry, supports the professional and personal growth of its members, and applies the expertise of its members to address societal needs.

FLOOR PLAN OF DCPE CENTER

Ground Floor

Basement

First Floor

Second Floor

FLOOR PLAN OF DCPE NORTH AND SOUTH WINGS

North and South Wings